【数据结构与算法分析】0基础带你学数据结构与算法分析06--树(TREE)

简介: 笔记

前言


Tree 是一些结点的集合,这个集合可以是空集;若不是空集,则 Tree 是由称为 根 的结点 r 以及零或多个非空的子树 T1,T2,⋯ , 组成,这些子树的根都与 r 有一条有向边 (edge) 连接。这些子树的根被称为根 r 的孩子 (child),而 r 是这些 child 的父亲 (parent)。

2.png



树的属性


根据给出的树的递归定义,可以发现一个树是由 N 个 node 和 N−1 条 edge 的集合。而除 root 外的所有 node 都有一个由其 parent 指向它的 edge。在树中有一些特殊的属性是需要注意的,这里先给出相关概念与示例,如果不是很理解,可以通过结合示例来理解这些概念。


结点的度 (degree)


       一个节点含有的子树的个数称为该节点的度


树的度 (degree of tree)


       一棵树中最大的 node degree 称为树的度


叶结点 (leaf)


       或称终端结点,如果结点满足 degree=0 则该结点为叶结点


分支结点 (branch node)


       或称内部结点 (internal node)、非终端结点,度不为 0 的结点


层次 (level)


       从 root 开始,root 所在的层为第 1 层,root 的 child 为第二层,以此类推


关系


       树就像一本族谱,从 root 开始结点直接有一定的亲缘关系


兄弟 (sibling): 具有相同父节点的节点互为兄弟节点

叔父 (uncle): 父结点的兄弟结点为该结点的叔父结点

堂兄弟: 父结点在同一层的结点互为堂兄弟


路径 (path)



结点 n1,n2,⋯ ,nk 的一个序列,使得对于 1≤i<k 满足 ni 是 ni+1 的 parent,则这个序列被称为从 n1 到结点 nk 的 path。其路径长度 (length) 为路径上的 edge 的数量,即 k−1 。特别地,每个结点到自己的 path lenth 为 0


深度 (depth)


对于结点 ni ,从 root 到 ni 的唯一路径的长度 (Depthroot=0)


高度 (height)


对于结点 ni ,从 ni 到 leaf 的最长路径长度 (Heightleaf=0)


树的高度


或称树的深度,其总是等于根的高度,或最深的结点的深度,可以认为一棵空树的高度为 −1


祖先 (ancestor)


对于结点 ni 与 nj 存在一条 ni 到 nj 的路径,那么称 ni 是 nj 的祖先 (ancestor),而 nj 是 ni 的 后裔 (descendant)


距离 (distance)


对于结点 ni 与 nj ,从最近的公共祖先结点 nk 分别到它们的路径长度之和被称为距离 (distance)。特别地,如果 ni=nk ,则 ni 与 nj 的距离为 ni 到 nj 的路径的长度

3.png

注:


严蔚敏老师的数据结构中,或者往常的实现中,根的高度为 1,而叶的深度也为 1,树的高度一般指其最大的层次,因此认为空树的高度为 0。


树的实现


实现树的一种方法是在每一个结点上,除数据外还需要一些链域来指向该结点的每个子结点,然而由于每个结点的子结点数量是不确定的,我们不能直接建立到各个子结点的直接链接。如果申请一定大小的空间以存放子结点,则可能会造成空间的浪费,或不足。因此我们链表的形式存储子结点,而父结点中只存储第一个子结点的指针,如果该链域为空则意味着该结点是叶结点 (degree=0。每个结点中存在一个指向其下一个兄弟的指针,为遍历父结点的所有孩子提供了方法,当该结点 next_sibling=nullptr 时意味着这是父结点的最后一个子结点。


struct TreeBaseNode {
  TreeBaseNode* first_child;
  TreeBaseNode* next_sibling;
};
template <class Element>
struct TreeNode {
  Element data;
};

如果我们用这个结构实现上述图示的树,可以画一下其表示。

4.png

可以发现,除非该结点是 leaf,否则我们很难判断该结点的 degree。且在计算深度与距离时,要十分小心在兄弟间步进,因为兄弟间步进并不会增加其与 parent 的距离。


树的遍历与应用



观察你系统中的文件系统,回到文件系统的顶层 / (root),并浏览一些目录你会发现, 整个目录结构与 tree 是类似的,我们也常常将其称为目录树。

5.png

这颗目录树稍微有些复杂了,不过问题不大。一般文件系统中采用路径名来访问一个文件,而我们可以像遍历树一样遍历这个文件系统,将每个文件打印出来,并按照层级来缩进文件名称。


深度有限遍历 (DFS)

给出一个代码实现:


void filesystem::list_all(file& f, int depth = 0) const {
  print_name(f, depth);  // 打印文件的名称
  if (is_directory(f)) {
    for (file p : get_file_list(f)) { // 遍历目录中的每个文件
      list_all(p, depth + 1);
    }
  }
}

最终的输出结果可能是:

/
 |--- mnt/
 |--- home/
       |--- GinShio/
 |--- usr
       |--- LICENSE
       |--- lib/
             |--- libQt5Core.so
             |--- X11/
                   |--- display-manager
                   |--- etc/
                   |--- displaymanagers/
                         |--- console
                         |--- lightdm
                         |--- sddm
                         |--- xdm
             |--- libstdc++.so.6
             |--- mozilla/
                   |--- kmozillahelper
       |--- bin/
             |--- latexmk
             |--- pdftk
             |--- zsh
.....
.....


在遍历中,每访问一个结点时,对结点的处理工作总是比其子结点的处理先进行,这种先处理根再处理子结点的策略被称为 前序遍历 (preorder traversal)。而另一种常用的遍历方法是 后序遍历 (postorder traversal),即在结点的所有子结点处理完成后再对其进行处理。无论这两种遍历的哪一个,在遍历这个树时总是可以在 O(N) 的时间复杂度里完成。对于目录的 postorder traversal 留给读者思考并实现。


现在考虑这两种算法有什么共通的特点。有没有发现它们都是在一棵子树上处理完所有结点之后再转移到另一棵子树上,这种一直向着 child 递归,直到全部递归结束时再向 sibling 递归的算法,就被称之为 深度优先搜索 (Depth-first Search, DFS)。由于 DFS 使用递归算法,因此 DFS 总能被改写为 loop,非 tail recursion 的递归有可能需要 stack 的帮助才能改为 loop。



广度优先遍历 (BFS)

请回看 树的实现 一节的图,图中的树如果以一层一层遍历,当一层的所有结点都被遍历完时,再进入更深一层,从这层的第一个结点开始处理。这种遍历方式被称为 广度优先遍历 (Breadth-first Search, BFS) 或者是层序遍历。


相关文章
|
8天前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
34 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
4天前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
17 4
|
11天前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
13 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
10天前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
11天前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
15 0
|
11天前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
13 0
|
11天前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
17 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
11天前
|
搜索推荐 算法
数据结构与算法学习十四:常用排序算法总结和对比
关于常用排序算法的总结和对比,包括稳定性、内排序、外排序、时间复杂度和空间复杂度等术语的解释。
12 0
数据结构与算法学习十四:常用排序算法总结和对比
|
11天前
|
存储 缓存 分布式计算
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题
这篇文章是关于数据结构与算法的学习指南,涵盖了数据结构的分类、数据结构与算法的关系、实际编程中遇到的问题以及几个经典的算法面试题。
21 0
数据结构与算法学习一:学习前的准备,数据结构的分类,数据结构与算法的关系,实际编程中遇到的问题,几个经典算法问题