【算法题解】 Day24 动态规划

简介: 今天的算法是 「动态规划」 相关,“算法题解系列文章旨在精选重点与易错的算法题,总结常见的算法思路与可能出现的错误,以实战习题的形式理解算法,使用算法。”

剑指 Offer 42. 连续子数组的最大和

题目

剑指 Offer 42. 连续子数组的最大和 难度:easy

输入一个整型数组,数组中的一个或连续多个整数组成一个子数组。求所有子数组的和的最大值。

要求时间复杂度为 $O(n)$。

示例1:

输入: nums = [-2,1,-3,4,-1,2,1,-5,4]
输出: 6
解释: 连续子数组 [4,-1,2,1] 的和最大,为 6。

提示:

  • 1 <= arr.length <= 10^5
  • -100 <= arr[i] <= 100

 

方法一:动态规划

思路

假设 $\textit{nums}$ 数组的长度是 n,下标从 0 到 n−1。

我们用 $f(i)$ 代表以第 i 个数结尾的「连续子数组的最大和」,那么很显然我们要求的答案就是:

$$ \max_{0 \leq i \leq n-1} \{ f(i) \} $$

因此我们只需要求出每个位置的 $f(i)$,然后返回 f 数组中的最大值即可。那么我们如何求 $f(i)$呢?我们可以考虑 $\textit{nums}[i]$ 单独成为一段还是加入 $f(i-1)$ 对应的那一段,这取决于 $\textit{nums}[i]$ 和 $f(i-1) + \textit{nums}[i]$ 的大小,我们希望获得一个比较大的,于是可以写出这样的动态规划转移方程:

$$ f(i) = \max \{ f(i-1) + \textit{nums}[i], \textit{nums}[i] \} $$

不难给出一个时间复杂度 $O(n)$、空间复杂度 $O(n)$ 的实现,即用一个 $f$ 数组来保存 $f(i)$ 的值,用一个循环求出所有 $f(i)$。考虑到 $f(i)$ 只和 $f(i-1)$ 相关,于是我们可以只用一个变量 $\textit{pre}$ 来维护对于当前 $f(i)$ 的 $f(i-1)$ 的值是多少,从而让空间复杂度降低到 $O(1)$,这有点类似「滚动数组」的思想。
 

解题

Python:

class Solution:
    def maxSubArray(self, nums: List[int]) -> int:
        for i in range(1, len(nums)):
            nums[i] += max(nums[i - 1], 0)
        return max(nums)

Java:

class Solution {
    public int maxSubArray(int[] nums) {
        int pre = 0, maxAns = nums[0];
        for (int x : nums) {
            pre = Math.max(pre + x, x);
            maxAns = Math.max(maxAns, pre);
        }
        return maxAns;
    }
}

 

剑指 Offer 47. 礼物的最大价值

题目

剑指 Offer 47. 礼物的最大价值 难度:medium

在一个 $m*n$ 的棋盘的每一格都放有一个礼物,每个礼物都有一定的价值(价值大于 0)。你可以从棋盘的左上角开始拿格子里的礼物,并每次向右或者向下移动一格、直到到达棋盘的右下角。给定一个棋盘及其上面的礼物的价值,请计算你最多能拿到多少价值的礼物?

示例 1:

输入: 
[
  [1,3,1],
  [1,5,1],
  [4,2,1]
]
输出: 12
解释: 路径 1→3→5→2→1 可以拿到最多价值的礼物

提示:

  • 0 < grid.length <= 200
  • 0 < grid[0].length <= 200

 

方法一:动态规划

思路

根据题目说明,易得某单元格只可能从上边单元格或左边单元格到达。

设 $f(i, j)$ 为从棋盘左上角走至单元格 $(i ,j)$ 的礼物最大累计价值,易得到以下递推关系:$f(i,j)$ 等于 $f(i,j-1)$ 和 $f(i-1,j)$ 中的较大值加上当前单元格礼物价值 $grid(i,j)$ 。

$$ f(i,j) = \max[f(i,j-1), f(i-1,j)] + grid(i,j) $$

因此,可用动态规划解决此问题,以上公式便为转移方程。

image.png
 

解题

Python:

class Solution:
    def maxValue(self, grid: List[List[int]]) -> int:
        m, n = len(grid), len(grid[0])
        for j in range(1, n): # 初始化第一行
            grid[0][j] += grid[0][j - 1]
        for i in range(1, m): # 初始化第一列
            grid[i][0] += grid[i - 1][0]
        for i in range(1, m):
            for j in range(1, n):
                grid[i][j] += max(grid[i][j - 1], grid[i - 1][j])
        return grid[-1][-1]

Java:

class Solution {
    public int maxValue(int[][] grid) {
        int m = grid.length, n = grid[0].length;
        for(int j = 1; j < n; j++) // 初始化第一行
            grid[0][j] += grid[0][j - 1];
        for(int i = 1; i < m; i++) // 初始化第一列
            grid[i][0] += grid[i - 1][0];
        for(int i = 1; i < m; i++)
            for(int j = 1; j < n; j++) 
                grid[i][j] += Math.max(grid[i][j - 1], grid[i - 1][j]);
        return grid[m - 1][n - 1];
    }
}

 

后记

📝 上篇精讲: 【算法题解】 Day23 搜索与回溯
💖 我是  𝓼𝓲𝓭𝓲𝓸𝓽,期待你的关注;
👍 创作不易,请多多支持;
🔥 系列专栏: 算法题解
目录
相关文章
|
18天前
|
存储 算法
深入了解动态规划算法
深入了解动态规划算法
44 1
|
18天前
|
算法 测试技术 C++
【动态规划算法】蓝桥杯填充问题(C/C++)
【动态规划算法】蓝桥杯填充问题(C/C++)
|
3月前
|
算法 开发者 Python
惊呆了!Python算法设计与分析,分治法、贪心、动态规划...这些你都会了吗?不会?那还不快来学!
【7月更文挑战第10天】探索编程巅峰,算法至关重要。Python以其易读性成为学习算法的首选。分治法,如归并排序,将大问题拆解;贪心算法,如找零问题,每步求局部最优;动态规划,如斐波那契数列,利用子问题解。通过示例代码,理解并掌握这些算法,提升编程技能,面对挑战更加从容。动手实践,体验算法的神奇力量吧!
68 8
|
3月前
|
算法 Python
算法不再难!Python分治法、贪心、动态规划实战解析,轻松应对各种算法挑战!
【7月更文挑战第8天】掌握Python算法三剑客:分治、贪心、动态规划。分治如归并排序,将大问题拆解递归解决;贪心策略在每步选最优解,如高效找零;动态规划利用子问题解,避免重复计算,解决最长公共子序列问题。实例展示,助你轻松驾驭算法!**
64 3
|
9天前
|
算法
动态规划算法学习三:0-1背包问题
这篇文章是关于0-1背包问题的动态规划算法详解,包括问题描述、解决步骤、最优子结构性质、状态表示和递推方程、算法设计与分析、计算最优值、算法实现以及对算法缺点的思考。
32 2
动态规划算法学习三:0-1背包问题
|
9天前
|
算法
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
这篇文章介绍了动态规划算法中解决最大上升子序列问题(LIS)的方法,包括问题的描述、动态规划的步骤、状态表示、递推方程、计算最优值以及优化方法,如非动态规划的二分法。
37 0
动态规划算法学习四:最大上升子序列问题(LIS:Longest Increasing Subsequence)
|
9天前
|
算法
动态规划算法学习二:最长公共子序列
这篇文章介绍了如何使用动态规划算法解决最长公共子序列(LCS)问题,包括问题描述、最优子结构性质、状态表示、状态递归方程、计算最优值的方法,以及具体的代码实现。
40 0
动态规划算法学习二:最长公共子序列
|
18天前
|
存储 人工智能 算法
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
【算法——动态规划】蓝桥ALGO-1007 印章(C/C++)
|
9天前
|
存储 算法
动态规划算法学习一:DP的重要知识点、矩阵连乘算法
这篇文章是关于动态规划算法中矩阵连乘问题的详解,包括问题描述、最优子结构、重叠子问题、递归方法、备忘录方法和动态规划算法设计的步骤。
42 0
|
18天前
|
算法 C++
【算法解题思想】动态规划+深度优先搜索(C/C++)
【算法解题思想】动态规划+深度优先搜索(C/C++)