1统计学习及监督学习概论

简介: 笔记

1.1 统计学习


统计学习方法的步骤

得到一个有限的训练数据集合

确定学习模型的集合

确定模型选择的准则

实现求解最优模型的算法

通过学习方法选择最优模型

利用学习的最优模型对新数据进行预测或分析


1.2 统计学习方法的分类


基本分类

监督学习

无监督学习

强化学习

按模型分类

概率模型和非概率模型

线性模型和非线性模型

参数化模型和非参数化模型

按技巧分类

贝叶斯学习

核方法

按算法分类

在线学习

批量学习


1.2.1 基本分类

监督学习:


监督学习(Supervised learning) 是指从标注数据中学习预测模型的机器学习问题,其本质是学习输入到输出的映射的统计规律


输入空间


输入的所有可能取值的集合


实例(instance)


每一个具体的输入,通常由特征向量(Feature vector)表示


特征空间


所有特征向量存在的空间


输出空间


输出的所有可能的集合


根据变量类型的不同:


输入变量与输出变量为连续变量的预测问题 回归问题

输出变量为有限个离散变量的预测问题 分类问题

输入变量与输出变量均为变量序列的预测问题 标注问题

监督学习的基本假设:X  和 Y  具有联合概率分布 P(X,Y)


监督学习的目的:学习一个输入到输出的映射,这一映射以模型表示


模型的形式:条件概率分布P(Y∣X)或决策函数 Y=f(X)


假设空间:所有这些可能模型的集合


监督学习的流程图:



模型的形式:条件概率分布P(Y∣X)或决策函数 Y=f(X)


假设空间:所有这些可能模型的集合


监督学习的流程图:

21.png


目录
相关文章
|
机器学习/深度学习 算法
经典机器学习系列(六)【集成学习】之周志华西瓜书-AdaBoost算法证明解析
经典机器学习系列(六)【集成学习】之周志华西瓜书-AdaBoost算法证明解析
175 0
|
机器学习/深度学习 自然语言处理 算法
半监督学习|深度学习(李宏毅)(九)
半监督学习|深度学习(李宏毅)(九)
563 0
半监督学习|深度学习(李宏毅)(九)
|
机器学习/深度学习 自然语言处理 算法
【机器学习】十大算法之一 “朴素贝叶斯”
朴素贝叶斯算法是一种监督学习的算法,通过计算条件概率来预测或分类数据。它的核心思想是贝叶斯定理,即后验概率等于先验概率与似然函数的乘积除以证据因子。在文本分类的应用中,假设我们有一个文档和一个文档分类,我们想要判断这个文档属于哪个分类。我们可以将文档中的每个词都看作一个特征,每个特征的值为 0 或 1,0 表示该词不在文档中,1 表示该词在文档中。这样,我们就可以将每个文档表示为一个特征向量。然后,我们可以使用朴素贝叶斯算法来计算每个分类的条件概率,并选择条件概率最大的分类作为文档所属的分类。
370 0
【机器学习】十大算法之一 “朴素贝叶斯”
|
机器学习/深度学习 DataX C++
机器学习入门详解(一):理解监督学习中的最大似然估计
 这篇文章在统计学的背景下对机器学习学习建模过程进行了解密。将带你了解如何对数据的假设使我们能够创建有意义的优化问题。事实上,我们将推导出常用的标准,如分类中的交叉熵和回归中的均方误差。
181 0
机器学习入门详解(一):理解监督学习中的最大似然估计
|
机器学习/深度学习 自然语言处理 Python
机器学习系列 | 03:从朴素贝叶斯和HMM说起
本系列博文尝试系统化地梳理概率图模型。本文以朴素贝叶斯和HMM为切入点尝试窥探概率图模型一二。
|
机器学习/深度学习 算法 Python
学习笔记: 机器学习经典算法-多元线性回归的正规方程解
机器学习经典算法-个人笔记和学习心得分享
144 0
|
机器学习/深度学习 算法 BI
机器学习:李航-统计学习方法笔记(一)监督学习概论
机器学习:李航-统计学习方法笔记(一)监督学习概论
217 0
机器学习:李航-统计学习方法笔记(一)监督学习概论
|
机器学习/深度学习 索引
机器学习中的数学原理——感知机模型
机器学习中的数学原理——感知机模型
470 0
机器学习中的数学原理——感知机模型
|
机器学习/深度学习 人工智能 移动开发
【机器学习】线性分类——朴素贝叶斯分类器NBC(理论+图解+公式推导)
【机器学习】线性分类——朴素贝叶斯分类器NBC(理论+图解+公式推导)
181 0
【机器学习】线性分类——朴素贝叶斯分类器NBC(理论+图解+公式推导)
|
机器学习/深度学习 算法
统计学习-感知机算法
感知机(perceptron):有监督学习、判别模型,SVM的基础
150 0
统计学习-感知机算法

热门文章

最新文章

下一篇
开通oss服务