分形之城(0x02 递推与递归)

简介: 笔记

分形之城


题意

城市的规划在城市建设中是个大问题。


不幸的是,很多城市在开始建设的时候并没有很好的规划,城市规模扩大之后规划不合理的问题就开始显现。


而这座名为 Fractal 的城市设想了这样的一个规划方案,如下图所示:


41.png


当城区规模扩大之后,Fractal 的解决方案是把和原来城区结构一样的区域按照图中的方式建设在城市周围,提升城市的等级。


对于任意等级的城市,我们把正方形街区从左上角开始按照道路标号。


虽然这个方案很烂,Fractal 规划部门的人员还是想知道,如果城市发展到了等级 N,编号为 A 和 B 的两个街区的直线距离是多少。


街区的距离指的是街区的中心点之间的距离,每个街区都是边长为 10 米的正方形。


思路

43.png

1.z == 0 时,表示要求的房屋在第一个 1 级城市中,1 级城市经过顺时针旋转90°再水平翻转后得到 2 级城市左上角的部分


(0,0) —> (0,0)


(0,1) —> (1,0)


(1,0) —> (0,1)


(1,1) —> (1,1)


所以坐标变换为 (x,y) —> (y,x)


2.z == 1 时,表示要求的房屋在第二个 1 级城市中,1 级城市经过向右平移得到 2 级城市右上角的部分


(0,0) —> (0,2)


(0,1) —> (0,3)


(1,0) —> (1,2)


(1,1) —> (1,3)


所以坐标变换为 (x,y) —> (x,y + len) len为 n - 1级城市的边长


3.z ==2 时,表示要求的房屋在第三个 1 级城市中,1级城市经过向右再向下平移得到 2 级城市右下角的部分


(0,0) —> (2,2)


(0,1) —> (2,3)


(1,0) —> (3,2)


(1,1) —> (3,3)


所以坐标变换表示为 (x,y) —> (x + len, y + len) len为 n - 1级城市的边长


4.z == 3 时,表示要求的房屋在第四个 1 级城市中,1级城市经过逆时针旋转90°再向下平移得到 2 级城市的左下角的部分


(0,0) —> (3,1)


(0,1) —> (2,1)


(1,0) —> (2,0)


(1,1) —> (3,0)


所以坐标 变换表示为 (x,y) —> (2 * len - y - 1, len - x - 1) len为 n - 1级城市的边长


为方便起见,将房屋从 0 开始编号,相应的,求a - 1 b - 1的位置然后计算距离,最后距离乘以 10 即可(因为每个街区都是 10米的正方形)


代码

#include<bits/stdc++.h>
#include<unordered_map>
// #define int long long
#define INF 0x3f3f3f3f
#define mod 1000000007
#define rep(i, st, ed) for (int (i) = (st); (i) <= (ed);++(i))
#define pre(i, ed, st) for (int (i) = (ed); (i) >= (st);--(i))
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
template<typename T> inline T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<typename T> inline T lowbit(T x) { return x & -x; }
const int N = 100;
pair<LL, LL>cal(LL n, LL m) {
  if (n == 0)return { 0,0 };
  LL cnt = 1ll << (2 * n - 2);
  LL len = 1ll << (n - 1);
  pair<LL, LL>t = cal(n - 1, m % cnt); // 求出 n - 1 级地图中的位置
  LL x = t.first, y = t.second;
  LL z = m / cnt; // 在上一级的哪个区域里
  if (z == 0)return { y,x };
  else if (z == 1)return { x,y + len };
  else if (z == 3)return { 2 * len - y - 1, len - x - 1 };
  else return { x + len,y + len };
}
void solve() {
  LL n, a, b; cin >> n >> a >> b;
  pair<LL, LL>p1 = cal(n, a - 1);
  pair<LL, LL>p2 = cal(n, b - 1);
  printf("%.0lf\n", sqrt((p1.first - p2.first) * (p1.first - p2.first) + (p1.second - p2.second) * (p1.second - p2.second)) * 10);
}
signed main() {
  int t; cin >> t;
  while (t--)
    solve();
  return 0;
}



目录
相关文章
|
算法 测试技术 C++
C++算法:美丽塔O(n)解法单调栈
C++算法:美丽塔O(n)解法单调栈
|
7月前
|
存储
【洛谷 P2437】蜜蜂路线 题解(递归+记忆化搜索+高精度)
蜜蜂路线问题:蜜蜂从蜂房$m$到$n$($m&lt;n$)按数字递增爬行。给定$m$和$n$,求路线数。示例:$m=1$,$n=14$,输出$377$。100%数据$1\leq m,n\leq1000$。使用斐波那契序列优化,高精度处理大数。代码实现斐波那契存储并动态规划求解。
115 0
|
7月前
|
算法 Java
二叉树递归分形,牛顿分形图案
二叉树递归分形,牛顿分形图案
48 0
|
8月前
|
算法 测试技术 C++
【数学归纳法 组合数学】容斥原理
【数学归纳法 组合数学】容斥原理
|
C++
【LeetCode343】剪绳子(动态规划)
(1)确定状态 dp[i]是将正整数i拆成2个及其以上的正整数后,求所有数的乘积值。
150 0
【LeetCode343】剪绳子(动态规划)
|
机器学习/深度学习 算法
蓝桥杯:递推算法 递归算法 例题:斐波纳契数列
蓝桥杯:递推算法 递归算法 例题:斐波纳契数列
73 0
|
算法
【每日挠头算法题】Acwing 756. 蛇形矩阵 —— 巧妙解法
【每日挠头算法题】Acwing 756. 蛇形矩阵 —— 巧妙解法
153 0
【每日挠头算法题】Acwing 756. 蛇形矩阵 —— 巧妙解法
|
算法 JavaScript 前端开发
日拱算法:解两道“杨辉三角”题
什么是“杨辉三角”,想必大家并不陌生~~ 在「杨辉三角」中,每个数是它左上方和右上方的数的和。
|
算法 Java
【递归与回溯算法】汉诺塔与八皇后问题详解
文章目录 1 汉诺塔问题 1.1 汉诺塔问题概述 1.2 思路分析 1.3 代码实现(Java) 1.4 结果验证 2 八皇后问题 2.1 八皇后问题概述 2.2 思路分析 2.2.1 问题划分与分析 2.2.2 涉及到的数据结构分析 2.2.3 上下对角线与行列的关系 2.3 代码实现(Java) 2.4 结果验证
【递归与回溯算法】汉诺塔与八皇后问题详解