分形之城(0x02 递推与递归)

简介: 笔记

分形之城


题意

城市的规划在城市建设中是个大问题。


不幸的是,很多城市在开始建设的时候并没有很好的规划,城市规模扩大之后规划不合理的问题就开始显现。


而这座名为 Fractal 的城市设想了这样的一个规划方案,如下图所示:


41.png


当城区规模扩大之后,Fractal 的解决方案是把和原来城区结构一样的区域按照图中的方式建设在城市周围,提升城市的等级。


对于任意等级的城市,我们把正方形街区从左上角开始按照道路标号。


虽然这个方案很烂,Fractal 规划部门的人员还是想知道,如果城市发展到了等级 N,编号为 A 和 B 的两个街区的直线距离是多少。


街区的距离指的是街区的中心点之间的距离,每个街区都是边长为 10 米的正方形。


思路

43.png

1.z == 0 时,表示要求的房屋在第一个 1 级城市中,1 级城市经过顺时针旋转90°再水平翻转后得到 2 级城市左上角的部分


(0,0) —> (0,0)


(0,1) —> (1,0)


(1,0) —> (0,1)


(1,1) —> (1,1)


所以坐标变换为 (x,y) —> (y,x)


2.z == 1 时,表示要求的房屋在第二个 1 级城市中,1 级城市经过向右平移得到 2 级城市右上角的部分


(0,0) —> (0,2)


(0,1) —> (0,3)


(1,0) —> (1,2)


(1,1) —> (1,3)


所以坐标变换为 (x,y) —> (x,y + len) len为 n - 1级城市的边长


3.z ==2 时,表示要求的房屋在第三个 1 级城市中,1级城市经过向右再向下平移得到 2 级城市右下角的部分


(0,0) —> (2,2)


(0,1) —> (2,3)


(1,0) —> (3,2)


(1,1) —> (3,3)


所以坐标变换表示为 (x,y) —> (x + len, y + len) len为 n - 1级城市的边长


4.z == 3 时,表示要求的房屋在第四个 1 级城市中,1级城市经过逆时针旋转90°再向下平移得到 2 级城市的左下角的部分


(0,0) —> (3,1)


(0,1) —> (2,1)


(1,0) —> (2,0)


(1,1) —> (3,0)


所以坐标 变换表示为 (x,y) —> (2 * len - y - 1, len - x - 1) len为 n - 1级城市的边长


为方便起见,将房屋从 0 开始编号,相应的,求a - 1 b - 1的位置然后计算距离,最后距离乘以 10 即可(因为每个街区都是 10米的正方形)


代码

#include<bits/stdc++.h>
#include<unordered_map>
// #define int long long
#define INF 0x3f3f3f3f
#define mod 1000000007
#define rep(i, st, ed) for (int (i) = (st); (i) <= (ed);++(i))
#define pre(i, ed, st) for (int (i) = (ed); (i) >= (st);--(i))
using namespace std;
typedef long long LL;
typedef pair<int, int> PII;
template<typename T> inline T gcd(T a, T b) { return b ? gcd(b, a % b) : a; }
template<typename T> inline T lowbit(T x) { return x & -x; }
const int N = 100;
pair<LL, LL>cal(LL n, LL m) {
  if (n == 0)return { 0,0 };
  LL cnt = 1ll << (2 * n - 2);
  LL len = 1ll << (n - 1);
  pair<LL, LL>t = cal(n - 1, m % cnt); // 求出 n - 1 级地图中的位置
  LL x = t.first, y = t.second;
  LL z = m / cnt; // 在上一级的哪个区域里
  if (z == 0)return { y,x };
  else if (z == 1)return { x,y + len };
  else if (z == 3)return { 2 * len - y - 1, len - x - 1 };
  else return { x + len,y + len };
}
void solve() {
  LL n, a, b; cin >> n >> a >> b;
  pair<LL, LL>p1 = cal(n, a - 1);
  pair<LL, LL>p2 = cal(n, b - 1);
  printf("%.0lf\n", sqrt((p1.first - p2.first) * (p1.first - p2.first) + (p1.second - p2.second) * (p1.second - p2.second)) * 10);
}
signed main() {
  int t; cin >> t;
  while (t--)
    solve();
  return 0;
}



目录
相关文章
|
5月前
|
存储
【洛谷 P2437】蜜蜂路线 题解(递归+记忆化搜索+高精度)
蜜蜂路线问题:蜜蜂从蜂房$m$到$n$($m&lt;n$)按数字递增爬行。给定$m$和$n$,求路线数。示例:$m=1$,$n=14$,输出$377$。100%数据$1\leq m,n\leq1000$。使用斐波那契序列优化,高精度处理大数。代码实现斐波那契存储并动态规划求解。
84 0
|
5月前
|
算法 Java
二叉树递归分形,牛顿分形图案
二叉树递归分形,牛顿分形图案
31 0
汉诺塔+小青蛙跳台阶---《递归》
汉诺塔+小青蛙跳台阶---《递归》
101 0
|
机器学习/深度学习 算法
<<算法很美>>——(六)——回溯算法(下)—N皇后问题
<<算法很美>>——(六)——回溯算法(下)—N皇后问题
<<算法很美>>——(六)——回溯算法(下)—N皇后问题
|
机器学习/深度学习 算法
模拟退火-n皇后问题
模拟退火-n皇后问题
|
缓存 算法 网络协议
贪心法
贪心法是把一个复杂问题分解为一系列较为简单的局部最优选择,每一步选择都是对当前解的一个扩展,直到获得问题的完整解。贪心法的典型应用是求解最优化问题,而且对许多问题都能得到整体最优解,即使不能得到整体最优解,通常也是最优解的很好近似。
|
存储 缓存 移动开发
动态规划法
动态规划是在20世纪50年代由美国数学家贝尔曼为研究最优控制问题而提出的,当该方法在应用数学中的价值被大家认同以后,在计算机学界,动态规划法成为一种通用的算法设计技术用来求解多阶段决策最优化问题。
|
机器学习/深度学习 JavaScript 前端开发
LDUOJ——最小生成树(欧拉函数+思维)
LDUOJ——最小生成树(欧拉函数+思维)
104 0
|
算法
【贪心法】会场安排问题
【贪心法】会场安排问题
256 0
【贪心法】会场安排问题
|
存储
【贪心法】程序存储问题
【贪心法】程序存储问题
214 0
【贪心法】程序存储问题