pyecharts各种图表实现(超级全)(下)

简介: 以下默认都是在Jupyter Notebook展示 也可以将每个图代码的最后一行换为 所创建的对象.render('名字.html')转换为html文件就可以查看啦

关系图

nodes = [
    {"name": "结点1", "symbolSize": 1},
    {"name": "结点2", "symbolSize": 2},
    {"name": "结点3", "symbolSize": 3},
    {"name": "结点4", "symbolSize": 4},
    {"name": "结点5", "symbolSize": 5},
    {"name": "结点6", "symbolSize": 6},
    {"name": "结点7", "symbolSize": 7},
    {"name": "结点8", "symbolSize": 8},
]
links = [{'source': '结点1', 'target': '结点2'},
         {'source': '结点1', 'target': '结点3'},
         {'source': '结点1', 'target': '结点4'},
         {'source': '结点2', 'target': '结点1'},
         {'source': '结点3', 'target': '结点4'},
         {'source': '结点3', 'target': '结点5'},
         {'source': '结点3', 'target': '结点6'},
         {'source': '结点4', 'target': '结点1'},
         {'source': '结点4', 'target': '结点2'},
         {'source': '结点4', 'target': '结点7'},
         {'source': '结点4', 'target': '结点8'},
         {'source': '结点5', 'target': '结点1'},
         {'source': '结点5', 'target': '结点4'},
         {'source': '结点5', 'target': '结点6'},
         {'source': '结点5', 'target': '结点7'},
         {'source': '结点5', 'target': '结点8'},
         {'source': '结点6', 'target': '结点1'},
         {'source': '结点6', 'target': '结点7'},
         {'source': '结点6', 'target': '结点8'},
         {'source': '结点7', 'target': '结点1'},
         {'source': '结点7', 'target': '结点2'},
         {'source': '结点7', 'target': '结点8'},
         {'source': '结点8', 'target': '结点1'},
         {'source': '结点8', 'target': '结点2'},
         {'source': '结点8', 'target': '结点3'},
         ]
graph = (
    Graph()
    .add("", nodes, links)
)
graph.render_notebook()

2345_image_file_copy_47.jpg

平行坐标系

# 虚假数据
data = [
    ['一班', 78, 91, 123, 78, 82, 67, "优秀"],
    ['二班', 89, 101, 127, 88, 86, 75, "良好"],
    ['三班', 86, 93, 101, 84, 90, 73, "合格"],
]
parallel = (
    Parallel()
    .add_schema(
        [
            opts.ParallelAxisOpts(
                dim=0,
                name="班级",
                type_="category",
                data=["一班", "二班", "三班"],
            ),
            opts.ParallelAxisOpts(dim=1, name="英语"),
            opts.ParallelAxisOpts(dim=2, name="数学"),
            opts.ParallelAxisOpts(dim=3, name="语文"),
            opts.ParallelAxisOpts(dim=4, name="物理"),
            opts.ParallelAxisOpts(dim=5, name="生物"),
            opts.ParallelAxisOpts(dim=6, name="化学"),
            opts.ParallelAxisOpts(
                dim=7,
                name="评级",
                type_="category",
                data=["优秀", "良好", "合格"],
            ),
        ]
    )
    .add("", data)
)
parallel.render_notebook()

2345_image_file_copy_48.jpg

极坐标系

# 虚假数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
data = [123, 153, 89, 107, 98, 23]
polar = (
    Polar()
    .add_schema(
        radiusaxis_opts=opts.RadiusAxisOpts(data=cate, type_="category"),
    )
    .add("", data, type_='bar')
)
polar.render_notebook()

2345_image_file_copy_49.jpg

雷达图

# 虚假数据
data = [
    [78, 91, 123, 78, 82, 67],
    [89, 101, 127, 88, 86, 75],
    [86, 93, 101, 84, 90, 73],
]
radar = (Radar()
         .add_schema(schema=[
             opts.RadarIndicatorItem(name="语文", max_=150),
             opts.RadarIndicatorItem(name="数学", max_=150),
             opts.RadarIndicatorItem(name="英语", max_=150),
             opts.RadarIndicatorItem(name="物理", max_=100),
             opts.RadarIndicatorItem(name="生物", max_=100),
             opts.RadarIndicatorItem(name="化学", max_=100),
         ]
)
    .add('', data)
)
radar.render_notebook()

2345_image_file_copy_50.jpg

旭日图

# 虚假数据
data = [
    {"name": "湖南",
     "children": [
             {"name": "长沙",
              "children": [
                  {"name": "雨花区", "value": 55},
                  {"name": "岳麓区", "value": 34},
                  {"name": "天心区", "value": 144},
              ]},
             {"name": "常德",
              "children": [
                      {"name": "武陵区", "value": 156},
                      {"name": "鼎城区", "value": 134},
              ]},
             {"name": "湘潭", "value": 87},
             {"name": "株洲", "value": 23},
     ],
     },
    {"name": "湖北",
     "children": [
             {"name": "武汉",
              "children": [
                  {"name": "洪山区", "value": 55},
                  {"name": "东湖高新", "value": 78},
                  {"name": "江夏区", "value": 34},
              ]},
             {"name": "鄂州", "value": 67},
             {"name": "襄阳", "value": 34},
     ],
     },
    {"name": "北京", "value": 235}
]
sunburst = (Sunburst()
            .add("", data_pair=data)
            )
sunburst.render_notebook()

2345_image_file_copy_55.jpg

桑基图

# 虚假数据
nodes = [
    {"name": "访问"},
    {"name": "注册"},
    {"name": "付费"},
]
links = [
    {"source": "访问", "target": "注册", "value": 50},
    {"source": "注册", "target": "付费", "value": 30},
]
sankey = (
    Sankey()
    .add("", nodes, links)
)
sankey.render_notebook()

2345_image_file_copy_56.jpg

河流图

# 虚假数据
cate = ['Apple', 'Huawei', 'Xiaomi', 'Oppo', 'Vivo', 'Meizu']
date_list = ["2020/4/{}".format(i + 1) for i in range(30)]
data = [[day, random.randint(10, 50), c] for day in date_list for c in cate]
river = (
    ThemeRiver()
    .add(
        series_name=cate,
        data=data,
        singleaxis_opts=opts.SingleAxisOpts(type_="time")
    )
)
river.render_notebook()

2345_image_file_copy_57.jpg

词云

words = [
    ("hey", 230),
    ("jude", 124),
    ("dont", 436),
    ("make", 255),
    ("it", 247),
    ("bad", 244),
    ("Take", 138),
    ("a sad song", 184),
    ("and", 12),
    ("make", 165),
    ("it", 247),
    ("better", 182),
    ("remember", 255),
    ("to", 150),
    ("let", 162),
    ("her", 266),
    ("into", 60),
    ("your", 82),
    ("heart", 173),
    ("then", 365),
    ("you", 360),
    ("can", 282),
    ("start", 273),
    ("make", 265),
]
wc = (
    WordCloud()
    .add("", words)
)
wc.render_notebook()

2345_image_file_copy_58.jpg

表格

from pyecharts.components import Table
table = Table()
headers = ["City name", "Area", "Population", "Annual Rainfall"]
rows = [
    ["Brisbane", 5905, 1857594, 1146.4],
    ["Adelaide", 1295, 1158259, 600.5],
    ["Darwin", 112, 120900, 1714.7],
    ["Hobart", 1357, 205556, 619.5],
    ["Sydney", 2058, 4336374, 1214.8],
    ["Melbourne", 1566, 3806092, 646.9],
    ["Perth", 5386, 1554769, 869.4],
]
table.add(headers, rows)
table.render_notebook()

City name Area Population Annual Rainfall

Brisbane 5905 1857594 1146.4

Adelaide 1295 1158259 600.5

Darwin 112 120900 1714.7

Hobart 1357 205556 619.5

Sydney 2058 4336374 1214.8

Melbourne 1566 3806092 646.9

Perth 5386 1554769 869.4

3D图表

3D散点图

data = [(random.randint(0, 100), random.randint(0, 100), random.randint(0, 100)) for _ in range(100)]
scatter3D = (Scatter3D()
             .add("", data)
             )
scatter3D.render_notebook()

3D折线图

data = []
for t in range(0, 1000):
    x = math.cos(t/10)
    y = math.sin(t/10)
    z = t/10
    data.append([x, y, z])
line3D = (Line3D()
          .add("", data,
               xaxis3d_opts=opts.Axis3DOpts(type_="value"),
               yaxis3d_opts=opts.Axis3DOpts(type_="value"))
          )
line3D.render_notebook()

3D直方图

data = [[i, j, random.randint(0, 100)] for i in range(24) for j in range(7)]
hour_list = [str(i) for i in range(24)]
week_list = ['周日', '周一', '周二', '周三', '周四', '周五', '周六']
bar3D = (
    Bar3D()
    .add(
        "",
        data,
        xaxis3d_opts=opts.Axis3DOpts(hour_list, type_="category"),
        yaxis3d_opts=opts.Axis3DOpts(week_list, type_="category"),
        zaxis3d_opts=opts.Axis3DOpts(type_="value"),
    )
)
bar3D.render_notebook()

3D地图

# 虚假数据
province = [
    '广东',
    '湖北',
    '湖南',
    '四川',
    '重庆',
    '黑龙江',
    '浙江',
    '山西',
    '河北',
    '安徽',
    '河南',
    '山东',
    '西藏']
data = [(i, random.randint(50, 150)) for i in province]
map3d = (
    Map3D()
    .add("", data_pair=data, maptype='china')
)
map3d.render_notebook()
3D地球
from pyecharts.faker import POPULATION
mapglobe = (
    MapGlobe()
    .add_schema()
    .add(
        series_name="",
        maptype="world",
        data_pair=POPULATION[1:]
    )
)
mapglobe.render_notebook()

树型图表

树图

# 虚假数据
data = [
    {"name": "湖南",
     "children": [
             {"name": "长沙",
              "children": [
                  {"name": "雨花区", "value": 55},
                  {"name": "岳麓区", "value": 34},
                  {"name": "天心区", "value": 144},
              ]},
             {"name": "常德",
              "children": [
                      {"name": "武陵区", "value": 156},
                      {"name": "鼎城区", "value": 134},
              ]},
             {"name": "湘潭", "value": 87},
             {"name": "株洲", "value": 23},
     ],
     }
]
tree = (
    Tree()
    .add("", data)
)
tree.render_notebook()

2345_image_file_copy_59.jpg

矩形树图

# 虚假数据
data = [
    {"name": "湖南",
     "children": [
             {"name": "长沙",
              "children": [
                  {"name": "雨花区", "value": 55},
                  {"name": "岳麓区", "value": 34},
                  {"name": "天心区", "value": 144},
              ]},
             {"name": "常德",
              "children": [
                      {"name": "武陵区", "value": 156},
                      {"name": "鼎城区", "value": 134},
              ]},
             {"name": "湘潭", "value": 87},
             {"name": "株洲", "value": 23},
     ],
     },
    {"name": "湖北",
     "children": [
             {"name": "武汉",
              "children": [
                  {"name": "洪山区", "value": 55},
                  {"name": "东湖高新", "value": 78},
                  {"name": "江夏区", "value": 34},
              ]},
             {"name": "鄂州", "value": 67},
             {"name": "襄阳", "value": 34},
     ],
     },
    {"name": "北京", "value": 235}
]
treemap = (
    TreeMap()
    .add("", data)
)
treemap.render_notebook()

2345_image_file_copy_60.jpg

目录
相关文章
|
数据可视化 Python
堆叠柱状图(pyecharts足矣 既好看又简单
堆叠柱状图(pyecharts足矣 既好看又简单
931 0
|
机器学习/深度学习 人工智能 达摩院
ModelScope 社区介绍和操作入门| 学习笔记
快速学习 ModelScope 社区介绍和操作入门
ModelScope 社区介绍和操作入门| 学习笔记
|
机器学习/深度学习 人工智能 算法
【机器学习基础】K-Means聚类算法
【机器学习基础】K-Means聚类算法
333 0
|
自然语言处理 算法 Java
地址描述转换为坐标点不使用API,有什么转换的方法?
地址描述转换为坐标点不使用API,有什么转换的方法?
648 64
|
10月前
|
前端开发 数据管理 测试技术
前端自动化测试:Jest与Cypress的实战应用与最佳实践
【10月更文挑战第27天】本文介绍了前端自动化测试中Jest和Cypress的实战应用与最佳实践。Jest适合React应用的单元测试和快照测试,Cypress则擅长端到端测试,模拟用户交互。通过结合使用这两种工具,可以有效提升代码质量和开发效率。最佳实践包括单元测试与集成测试结合、快照测试、并行执行、代码覆盖率分析、测试环境管理和测试数据管理。
373 2
|
数据可视化
可视化 | Pyecharts 单轴散点图(附完整代码)
可视化 | Pyecharts 单轴散点图(附完整代码)
|
机器学习/深度学习 数据采集 人工智能
机器学习实战 | 综合项目-电商销量预估进阶方案
本篇内容是Kaggle数据科学竞赛Rossmann store sales解决方案的进阶版本,整体方案包括探索性数据分析、缺失值处理、特征工程、基准模型与评估、XGBoost建模与调优等完整板块。
4356 1
机器学习实战 | 综合项目-电商销量预估进阶方案
|
数据可视化 Python 容器
基础 | Pyecharts绘图基础之图例配置项(LegendOpts)
基础 | Pyecharts绘图基础之图例配置项(LegendOpts)
|
新零售 供应链 算法
商品生命周期管理:新品打爆、爆品常青的必备利器
商品生命周期管理:新品打爆、爆品常青的必备利器
1262 0
|
定位技术 Python
pyecharts从入门到精通-地图专题GEO-世界地图和中国城市地图
pyecharts从入门到精通-地图专题GEO-世界地图和中国城市地图