算法与数据结构全阶班-左程云版(二)基础阶段之3.归并排序和快速排序(下)

简介: 本文主要介绍了两种排序,归并排序和快速排序,归并排序有递归和非递归2种方式实现,快速排序的升级版为荷兰国旗问题。

2.快速排序

Partition过程:

给定一个数组arr,和一个整数num。请把小于等于num的数放在数组的左边,大于num的数放在数组的右边;

要求额外空间复杂度O(1),时间复杂度O(N)。

思路如下:

2345_image_file_copy_125.jpg

Partition过程升级版(荷兰国旗问题):

给定一个数组arr,和一个整数num。请把小于num的数放在数组的左边,等于num的数放在数组的中间,大于num的数放在数组的右边;

要求额外空间复杂度O(1),时间复杂度O(N)。

思路如下:

2345_image_file_copy_126.jpg

两种分区实现如下:

public class PartitionAndQuickSort {
    /*
    普通分区:
    给定一个数组arr和一个整数num,
    请把小于等于num的数放在数组的左边,
    大于num的数放在数组的右边
     */
    public static int partition(int[] arr, int L, int R) {
        if (L > R) {
            return -1;
        }
        if (L == R) {
            return L;
        }
        int lessEqual = L - 1;
        int index = L;
        while (index < R) {
            if (arr[index] <= arr[R]) {
                swap(arr, index, ++lessEqual);
            }
            index++;
        }
        swap(arr, ++lessEqual, R);
        return lessEqual;
    }
    /*
    分区升级版:荷兰国旗:
    给定一个数组arr和一个整数num
    请把小于num的数放在数组的左边,
    等于num的数放在数组的中间,
    大于num的数放在数组的右边
     */
    public static int[] netherlandsFlag(int[] arr, int L, int R) {
        if (L > R) {
            return new int[]{-1, -1};
        }
        if (L == R) {
            return new int[]{L, R};
        }
        int less = L - 1, more = R;
        int index = L;
        while (index < more) {
            if (arr[index] == arr[R]) {
                index++;
            } else if (arr[index] < arr[R]) {
                swap(arr, index++, ++less);
            } else {
                swap(arr, index, --more);
            }
        }
        swap(arr, more, R);
        return new int[]{less + 1, more};
    }
    public static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
}

快速排序:

快速排序有3种方式:

(1)利用普通分区算法;

(2)利用荷兰国旗算法;

(3)随机选数与最后一个数交换,再利用荷兰国旗算法。

分析时间复杂度:

随机快排的时间复杂度分析:

1)通过分析知道,划分值越靠近中间,性能越好;越靠近两边,性能越差

2)随机选一个数进行划分的目的就是让好情况和差情况都变成概率事件

3)把每一种情况都列出来,会有每种情况下的时间复杂度,但概率都是1/N

4)那么所有情况都考虑,时间复杂度就是这种概率模型下的长期期望,

时间复杂度O(N*logN),额外空间复杂度O(logN)都是这么来的。

(1)前两种:

最差情况是数组已经有序:

2345_image_file_copy_128.jpg

(2)第三种

一般情况是获取到的随机数在数组中间位置附近,就属于较好的情况:

2345_image_file_copy_129.jpg

2345_image_file_copy_130.jpg

空间复杂度:

2345_image_file_copy_131.jpg

最差情况下是O(N),累加求期望收敛于O(LogN)。

3种快速排序实现如下:

public static void quickSort1(int[] arr) {
    if (null == arr || arr.length < 2) {
        return;
    }
    process1(arr, 0, arr.length-1);
}
public static void process1(int[] arr, int L, int R) {
    if (L >= R) {
        return;
    }
    int M = partition(arr, L, R);
    process1(arr, L, M - 1);
    process1(arr, M + 1, R);
}
public static void quickSort2(int[] arr) {
    if (null == arr || arr.length < 2) {
        return;
    }
    process2(arr, 0, arr.length-1);
}
public static void process2(int[] arr, int L, int R) {
    if (L >= R) {
        return;
    }
    int[] equalArea = netherlandsFlag(arr, L, R);
    process1(arr, L, equalArea[0] - 1);
    process1(arr, equalArea[1]+ 1, R);
}
public static void quickSort3(int[] arr) {
    if (null == arr || arr.length < 2) {
        return;
    }
    process3(arr, 0, arr.length-1);
}
public static void process3(int[] arr, int L, int R) {
    if (L >= R) {
        return;
    }
    swap(arr, (int) (Math.random() * (R + 1)), R);
    int[] equalArea = netherlandsFlag(arr, L, R);
    process1(arr, L, equalArea[0] - 1);
    process1(arr, equalArea[1]+ 1, R);
}

总结

归并排序有很多个应用场景,一般应用在数组中左边的数比右边的数满足某个条件时,进行某个操作,都可以在归并的过程中进行解决。

相关文章
|
16天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
27 1
|
20天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
63 4
|
1月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
53 4
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
91 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
17天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
114 61
|
17天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
17天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
25天前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
86 23
|
25天前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
57 20
|
16天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
43 1