算法与数据结构全阶班-左程云版(二)基础阶段之3.归并排序和快速排序(上)

简介: 本文主要介绍了两种排序,归并排序和快速排序,归并排序有递归和非递归2种方式实现,快速排序的升级版为荷兰国旗问题。

前言

本文主要介绍了两种排序,归并排序和快速排序,归并排序有递归和非递归2种方式实现,快速排序的升级版为荷兰国旗问题。

1.归并排序

归并排序:

1)整体是递归,左边排好序+右边排好序+ merge让整体有序;

2)让其整体有序的过程里用了排外序方法;

3)利用master公式来求解时间复杂度

4)可以用非递归实现。

递归方式举例如下:

2345_image_file_copy_117.jpg

实现如下:

// 递归方法实现
public static void mergeSort1(int[] arr) {
    if (null == arr || arr.length < 2) {
        return;
    }
    process(arr, 0, arr.length - 1);
}
public static void process(int[] arr, int L, int R) {
    // base case
    if (L == R) {
        return;
    }
    int mid = L + ((R - L) >> 1);
    process(arr, L, mid);
    process(arr, mid + 1, R);
    merge(arr, L, mid, R);
}
public static void merge(int[] arr, int L, int M, int R) {
    int[] help = new int[R - L + 1];
    int i = 0;
    int p1 = L;
    int p2 = M + 1;
    while (p1 <= M && p2 <= R) {
        help[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];
    }
    while (p1 <= M) {
        help[i++] = arr[p1++];
    }
    while (p2 <= R) {
        help[i++] = arr[p2++];
    }
    System.arraycopy(help, 0, arr, L, help.length);
}

非递归方式举例如下:

2345_image_file_copy_118.jpg

实现如下:

// 非递归方法实现
public static void mergeSort2(int[] arr) {
    if (null == arr || arr.length < 2) {
        return;
    }
    int N = arr.length;
    int mergeSize = 1;      // 步长
    while (mergeSize < N) {
        int L = 0;          // 当前左组的第一个位置
        while (L < N) {
            if (L + mergeSize >= N) {
                break;
            }
            int M = L + mergeSize - 1;
            int R = Math.min(M + mergeSize, N - 1);
            merge(arr, L, M, R);
            L = R + 1;
        }
        // 防止溢出
        if (mergeSize > N / 2) {
            break;
        }
        mergeSize <<= 1;
    }
}

现在计算时间复杂度:

递归方式:

2345_image_file_copy_119.jpg

非递归方式:

2345_image_file_copy_120.jpg

综上,归并排序复杂度:T(N)= 2*T(N/2)+ O(N^1)

根据master可知时间复杂度为O(N*logN)

merge过程需要辅助数组,所以额外空间复杂度为O(N)

归并排序的实质是把比较行为变成了有序信息并传递,比O(N^2)的排序快

相比于冒泡排序、选择排序和插入排序O(N2)的时间复杂度,归并排序O(N*LogN)的时间复杂度优化了很多,这是因为减少了比较次数。

用常见面试题再深入理解一下归并排序的精髓。

在一个数组中,一个数组左边比它小的数的总和,叫数的小和,所有数的小和累加起来,叫数组小和。

举例:[1,3,4,2,5]

1左边比1小的数︰没有

3左边比3小的数:1

4左边比4小的数:1、3

2左边比2小的数:1

5左边比5小的数: 1、3、4、2

所以数组的小和为1+1+3+1+1+3+4+2=16

基本思路:

左组的数小于右组的数时,产生小和,左指针右移;

左组的数等于右组时,直接拷贝右组,不产生小和;

左组的数大于右组时,直接拷贝右移,不产生小和。

小和产生的时候就是merge的时候,如下:

2345_image_file_copy_122.jpg

原理是:思路转换,从计算一个数左边更小的数之和转换为一个数右边更大的数之和。

实现如下:

public class SmallSum {
    public static int smallSum(int[] arr) {
        if (null == arr || arr.length < 2) {
            return 0;
        }
        return process(arr, 0, arr.length - 1);
    }
    public static int process(int[] arr, int l, int r) {
        if (l == r) {
            return 0;
        }
        int mid = l + (r - l) >> 1;
        return process(arr, l, mid)
                + process(arr, mid+1, r)
                + merge(arr, l, mid, r);
    }
    public static int merge(int[] arr, int l, int mid, int r) {
        int[] help = new int[r - l  + 1];
        int i = 0;
        int p1 = l, p2 = mid + 1;
        int res = 0;
        while (p1 <= mid && p2 <= r) {
            res += arr[p1] < arr[p2] ? (r - p2 + 1) * arr[p1] : 0;
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= mid) {
            help[i++] = arr[p1++];
        }
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        System.arraycopy(help, 0, arr, l, help.length);
        return res;
    }
}

扩展:在一个数组中求所有的降序对。

如下:

2345_image_file_copy_123.jpg

也就是求一个数右边有多少个数比它小,或者说,左边有多少个数比它大。

图示如下:

2345_image_file_copy_124.jpg

相关文章
|
2月前
|
存储 监控 安全
企业上网监控系统中红黑树数据结构的 Python 算法实现与应用研究
企业上网监控系统需高效处理海量数据,传统数据结构存在性能瓶颈。红黑树通过自平衡机制,确保查找、插入、删除操作的时间复杂度稳定在 O(log n),适用于网络记录存储、设备信息维护及安全事件排序等场景。本文分析红黑树的理论基础、应用场景及 Python 实现,并探讨其在企业监控系统中的实践价值,提升系统性能与稳定性。
66 1
|
2月前
|
存储 监控 算法
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
77 0
|
6月前
|
存储 算法 Java
算法系列之数据结构-二叉树
树是一种重要的非线性数据结构,广泛应用于各种算法和应用中。本文介绍了树的基本概念、常见类型(如二叉树、满二叉树、完全二叉树、平衡二叉树、B树等)及其在Java中的实现。通过递归方法实现了二叉树的前序、中序、后序和层次遍历,并展示了具体的代码示例和运行结果。掌握树结构有助于提高编程能力,优化算法设计。
185 10
 算法系列之数据结构-二叉树
|
6月前
|
算法 Java
算法系列之数据结构-Huffman树
Huffman树(哈夫曼树)又称最优二叉树,是一种带权路径长度最短的二叉树,常用于信息传输、数据压缩等方面。它的构造基于字符出现的频率,通过将频率较低的字符组合在一起,最终形成一棵树。在Huffman树中,每个叶节点代表一个字符,而每个字符的编码则是从根节点到叶节点的路径所对应的二进制序列。
155 3
 算法系列之数据结构-Huffman树
|
6月前
|
算法 Java
算法系列之数据结构-二叉搜索树
二叉查找树(Binary Search Tree,简称BST)是一种常用的数据结构,它能够高效地进行查找、插入和删除操作。二叉查找树的特点是,对于树中的每个节点,其左子树中的所有节点都小于该节点,而右子树中的所有节点都大于该节点。
187 22
|
10月前
|
C语言
【数据结构】栈和队列(c语言实现)(附源码)
本文介绍了栈和队列两种数据结构。栈是一种只能在一端进行插入和删除操作的线性表,遵循“先进后出”原则;队列则在一端插入、另一端删除,遵循“先进先出”原则。文章详细讲解了栈和队列的结构定义、方法声明及实现,并提供了完整的代码示例。栈和队列在实际应用中非常广泛,如二叉树的层序遍历和快速排序的非递归实现等。
871 9
|
10月前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
219 59
|
3月前
|
编译器 C语言 C++
栈区的非法访问导致的死循环(x64)
这段内容主要分析了一段C语言代码在VS2022中形成死循环的原因,涉及栈区内存布局和数组越界问题。代码中`arr[15]`越界访问,修改了变量`i`的值,导致`for`循环条件始终为真,形成死循环。原因是VS2022栈区从低地址到高地址分配内存,`arr`数组与`i`相邻,`arr[15]`恰好覆盖`i`的地址。而在VS2019中,栈区先分配高地址再分配低地址,因此相同代码表现不同。这说明编译器对栈区内存分配顺序的实现差异会导致程序行为不一致,需避免数组越界以确保代码健壮性。
49 0
栈区的非法访问导致的死循环(x64)
232.用栈实现队列,225. 用队列实现栈
在232题中,通过两个栈(`stIn`和`stOut`)模拟队列的先入先出(FIFO)行为。`push`操作将元素压入`stIn`,`pop`和`peek`操作则通过将`stIn`的元素转移到`stOut`来实现队列的顺序访问。 225题则是利用单个队列(`que`)模拟栈的后入先出(LIFO)特性。通过多次调整队列头部元素的位置,确保弹出顺序符合栈的要求。`top`操作直接返回队列尾部元素,`empty`判断队列是否为空。 两题均仅使用基础数据结构操作,展示了栈与队列之间的转换逻辑。
|
8月前
|
存储 C语言 C++
【C++数据结构——栈与队列】顺序栈的基本运算(头歌实践教学平台习题)【合集】
本关任务:编写一个程序实现顺序栈的基本运算。开始你的任务吧,祝你成功!​ 相关知识 初始化栈 销毁栈 判断栈是否为空 进栈 出栈 取栈顶元素 1.初始化栈 概念:初始化栈是为栈的使用做准备,包括分配内存空间(如果是动态分配)和设置栈的初始状态。栈有顺序栈和链式栈两种常见形式。对于顺序栈,通常需要定义一个数组来存储栈元素,并设置一个变量来记录栈顶位置;对于链式栈,需要定义节点结构,包含数据域和指针域,同时初始化栈顶指针。 示例(顺序栈): 以下是一个简单的顺序栈初始化示例,假设用C语言实现,栈中存储
332 77

热门文章

最新文章