算法与数据结构全阶班-左程云版(二)基础阶段之3.归并排序和快速排序(上)

简介: 本文主要介绍了两种排序,归并排序和快速排序,归并排序有递归和非递归2种方式实现,快速排序的升级版为荷兰国旗问题。

前言

本文主要介绍了两种排序,归并排序和快速排序,归并排序有递归和非递归2种方式实现,快速排序的升级版为荷兰国旗问题。

1.归并排序

归并排序:

1)整体是递归,左边排好序+右边排好序+ merge让整体有序;

2)让其整体有序的过程里用了排外序方法;

3)利用master公式来求解时间复杂度

4)可以用非递归实现。

递归方式举例如下:

2345_image_file_copy_117.jpg

实现如下:

// 递归方法实现
public static void mergeSort1(int[] arr) {
    if (null == arr || arr.length < 2) {
        return;
    }
    process(arr, 0, arr.length - 1);
}
public static void process(int[] arr, int L, int R) {
    // base case
    if (L == R) {
        return;
    }
    int mid = L + ((R - L) >> 1);
    process(arr, L, mid);
    process(arr, mid + 1, R);
    merge(arr, L, mid, R);
}
public static void merge(int[] arr, int L, int M, int R) {
    int[] help = new int[R - L + 1];
    int i = 0;
    int p1 = L;
    int p2 = M + 1;
    while (p1 <= M && p2 <= R) {
        help[i++] = arr[p1] <= arr[p2] ? arr[p1++] : arr[p2++];
    }
    while (p1 <= M) {
        help[i++] = arr[p1++];
    }
    while (p2 <= R) {
        help[i++] = arr[p2++];
    }
    System.arraycopy(help, 0, arr, L, help.length);
}

非递归方式举例如下:

2345_image_file_copy_118.jpg

实现如下:

// 非递归方法实现
public static void mergeSort2(int[] arr) {
    if (null == arr || arr.length < 2) {
        return;
    }
    int N = arr.length;
    int mergeSize = 1;      // 步长
    while (mergeSize < N) {
        int L = 0;          // 当前左组的第一个位置
        while (L < N) {
            if (L + mergeSize >= N) {
                break;
            }
            int M = L + mergeSize - 1;
            int R = Math.min(M + mergeSize, N - 1);
            merge(arr, L, M, R);
            L = R + 1;
        }
        // 防止溢出
        if (mergeSize > N / 2) {
            break;
        }
        mergeSize <<= 1;
    }
}

现在计算时间复杂度:

递归方式:

2345_image_file_copy_119.jpg

非递归方式:

2345_image_file_copy_120.jpg

综上,归并排序复杂度:T(N)= 2*T(N/2)+ O(N^1)

根据master可知时间复杂度为O(N*logN)

merge过程需要辅助数组,所以额外空间复杂度为O(N)

归并排序的实质是把比较行为变成了有序信息并传递,比O(N^2)的排序快

相比于冒泡排序、选择排序和插入排序O(N2)的时间复杂度,归并排序O(N*LogN)的时间复杂度优化了很多,这是因为减少了比较次数。

用常见面试题再深入理解一下归并排序的精髓。

在一个数组中,一个数组左边比它小的数的总和,叫数的小和,所有数的小和累加起来,叫数组小和。

举例:[1,3,4,2,5]

1左边比1小的数︰没有

3左边比3小的数:1

4左边比4小的数:1、3

2左边比2小的数:1

5左边比5小的数: 1、3、4、2

所以数组的小和为1+1+3+1+1+3+4+2=16

基本思路:

左组的数小于右组的数时,产生小和,左指针右移;

左组的数等于右组时,直接拷贝右组,不产生小和;

左组的数大于右组时,直接拷贝右移,不产生小和。

小和产生的时候就是merge的时候,如下:

2345_image_file_copy_122.jpg

原理是:思路转换,从计算一个数左边更小的数之和转换为一个数右边更大的数之和。

实现如下:

public class SmallSum {
    public static int smallSum(int[] arr) {
        if (null == arr || arr.length < 2) {
            return 0;
        }
        return process(arr, 0, arr.length - 1);
    }
    public static int process(int[] arr, int l, int r) {
        if (l == r) {
            return 0;
        }
        int mid = l + (r - l) >> 1;
        return process(arr, l, mid)
                + process(arr, mid+1, r)
                + merge(arr, l, mid, r);
    }
    public static int merge(int[] arr, int l, int mid, int r) {
        int[] help = new int[r - l  + 1];
        int i = 0;
        int p1 = l, p2 = mid + 1;
        int res = 0;
        while (p1 <= mid && p2 <= r) {
            res += arr[p1] < arr[p2] ? (r - p2 + 1) * arr[p1] : 0;
            help[i++] = arr[p1] < arr[p2] ? arr[p1++] : arr[p2++];
        }
        while (p1 <= mid) {
            help[i++] = arr[p1++];
        }
        while (p2 <= r) {
            help[i++] = arr[p2++];
        }
        System.arraycopy(help, 0, arr, l, help.length);
        return res;
    }
}

扩展:在一个数组中求所有的降序对。

如下:

2345_image_file_copy_123.jpg

也就是求一个数右边有多少个数比它小,或者说,左边有多少个数比它大。

图示如下:

2345_image_file_copy_124.jpg

相关文章
|
16天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
27 1
|
20天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
63 4
|
1月前
|
搜索推荐 C语言
【排序算法】快速排序升级版--三路快排详解 + 实现(c语言)
本文介绍了快速排序的升级版——三路快排。传统快速排序在处理大量相同元素时效率较低,而三路快排通过将数组分为三部分(小于、等于、大于基准值)来优化这一问题。文章详细讲解了三路快排的实现步骤,并提供了完整的代码示例。
53 4
|
17天前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
114 61
|
17天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
17天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
25天前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
86 23
|
25天前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
57 20
|
16天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
43 1
|
25天前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
44 0

热门文章

最新文章