算法与数据结构全阶班-左程云版(二)基础阶段之1.复杂度、对数器、二分法和异或运算(上)

简介: 本文主要介绍了数据结构与算法的基本概念,包括算法评价指标、复杂度、对数器、二分法和异或运算。

引言

本文主要介绍了数据结构与算法的基本概念,包括算法评价指标、复杂度、对数器、二分法和异或运算。

1.概述

评价算法优劣的核心指标

时间复杂度(流程决定)

额外空间复杂度(流程决定)

常数项时间(实现细节决定)

常见的常数时间的操作:

常见的算术运算(+、-、*、/、%等)

常见的位运算(>>、>>>、<<、|、&、^等)

赋值、比较、自增、自减操作等

数组寻址操作

总之,执行时间固定的操作都是常数时间的操作。

反之,执行时间不固定的操作,都不是常数时间的操作。

时间复杂度就是计算常数操作了多少次。

如何确定算法流程的总操作数量与样本数量之间的表达式关系:

1.想象该算法流程所处理的数据状况,要按照最差情况来。

2.把整个流程彻底拆分为一个个基本动作,保证每个动作都是常数时间的操作。

3.如果数据量为N,看看基本动作的数量和N是什么关系。

2.复杂度

如何确定算法流程的时间复杂度

当完成了表达式的建立,只要把最高阶项留下即可。低阶项都去掉,高阶项的系数也去掉。

记为:O(忽略掉系数的高阶项)

例如下图:

2345_image_file_copy_97.jpg

显然后者的时间复杂度更低。

时间复杂度的意义在于:

当我们要处理的样本量很大很大时,我们会发现低阶项是什么不是最重要的;每一项的系数是什么,不是最重要的。真正重要的就是最高阶项是什么。

这就是时间复杂度的意义.它是衡量算法流程的复杂程度的一种指标,该指标只与数据量有关,与过程之外的优化无关。

三种基本排序:

选择排序:

package complexity01;
import java.util.Arrays;
/**
 * @author Corley
 * @date 2021/10/3 19:26
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class SelectionSort {
    public static void selectionSort(int[] arr) {
        if (null == arr || arr.length < 2) {
            return;
        }
        int minIndex;
        for (int i = 0; i < arr.length - 1; i++) {
            minIndex = i;
            for (int j = i + 1; j < arr.length; j++) {
                minIndex = arr[minIndex] < arr[j] ? minIndex : j;
            }
            swap(arr, i, minIndex);
        }
    }
    private static void swap(int[] arr, int i, int j) {
        int tmp = arr[i];
        arr[i] = arr[j];
        arr[j] = tmp;
    }
    public static void main(String[] args) {
        int[] arr = new int[]{3, 2, 5, 1, 4, 9, 0, 7, 12, 5, 7, 3};
        System.out.println(Arrays.toString(arr));
        selectionSort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

冒泡排序:

package complexity01;
import java.util.Arrays;
/**
 * @author Corley
 * @date 2021/10/3 19:41
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BubbleSort {
    public static void bubbleSort(int[] arr) {
        if (null == arr || arr.length < 2) {
            return;
        }
        for (int i = arr.length - 1; i > 0; i--) {
            for (int j = 0; j < i; j++) {
                if (arr[j] > arr[j + 1]) {
                    swap(arr, j, j + 1);
                }
            }
        }
    }
    private static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }
    public static void main(String[] args) {
        int[] arr = new int[]{3, 2, 5, 1, 4, 9, 0, 7, 12, 5, 7, 3};
        System.out.println(Arrays.toString(arr));
        bubbleSort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

这两种排序算法的效果不会受到数据的初始状态的影响。

插入排序:

package complexity01;
import java.util.Arrays;
/**
 * @author Corley
 * @date 2021/10/3 20:10
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class InsertionSort {
    public static void insertionSort(int[] arr) {
        if (null == arr || arr.length < 2) {
            return;
        }
        for (int i = 1; i < arr.length; i++) {
            for (int j = i - 1; j >= 0 && arr[j] > arr[j + 1]; j--) {
                swap(arr, j, j + 1);
            }
        }
    }
    private static void swap(int[] arr, int i, int j) {
        arr[i] = arr[i] ^ arr[j];
        arr[j] = arr[i] ^ arr[j];
        arr[i] = arr[i] ^ arr[j];
    }
    public static void main(String[] args) {
        int[] arr = new int[]{3, 2, 5, 1, 4, 9, 0, 7, 12, 5, 7, 3};
        System.out.println(Arrays.toString(arr));
        insertionSort(arr);
        System.out.println(Arrays.toString(arr));
    }
}

插入排序的效果会受到数据的初始状态的影响,例如数组已经是有序的情况下。

额外空间复杂度:

你要实现一个算法流程,在实现算法流程的过程中,你需要开辟一些空间来支持你的算法流程。

作为输入参数的空间,不算额外空间;

作为输出结果的空间,也不算额外空间。

因为这些都是必要的、和现实目标有关的,所以都不算。

但除此之外,你的流程如果还需要开辟空间才能让你的流程继续下去。这部分空间就是额外空间。如果你的流程只需要开辟有限几个变量,额外空间复杂度就是O(1)。

算法流程的常数项的比拼方式:

放弃理论分析,生成随机数据直接测。为什么不去理论分析?

不是不能纯分析.而是没必要。因为不同常数时间的操作,虽然都是固定时间,但还是有快慢之分的。

比如,位运算的常数时间原小于算术运算的常数时间,这两个运算的常数时间又远小于数组寻址的时间。

所以如果纯理论分析,往往会需要非常多的分析过程。都已经到了具体细节的程度.莫不如交给实验数据好了。

常见的时间复杂度(我们陆续都会见到的):

排名从好到差:

O(1)

O(logN)

O(N)

O(N*logN)

O(N^2) O(N^3) … O(N^K)

O(2^N) O(3^N)… O(K^N)

O(N!)

算法和数据结构学习的大脉络:

1)知道怎么算的算法

2)知道怎么试的算法

3.对数器

对数器:

1,你想要测的方法a

2,实现复杂度不好但是容易实现的方法b,实现一个随机样本产生器

4,把方法a和方法b跑相同的随机样本,跑多次,看看得到的结果是否一样

5,如果有一个随机样本使得比对结果不一致,打印样本进行人工干预,改对方法a和方法b

6,当样本数量很多时比对测试依然正确,可以确定方法a已经正确。

4.二分法

二分法:

只要构建出能够排除另外一端的逻辑,就可以使用二分,而不一定需要保证数组有序。

应用:

1)在一个有序数组中,找某个数是否存在

package complexity01;
/**
 * @author Corley
 * @date 2021/10/4 9:03
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BinarySearchExist {
    public static boolean exist(int[] arr, int num) {
        if (null == arr || 0 == arr.length) {
            return false;
        }
        int L = 0, R = arr.length - 1;
        int mid;
        while (L < R) {
            mid = L + ((R - L) >> 1);
            if (arr[mid] == num) {
                return true;
            } else if (arr[mid] < num) {
                L = mid + 1;
            } else {
                R = mid - 1;
            }
        }
        return arr[L] == num;
    }
    public static void main(String[] args) {
        int[] arr = {0, 2, 5, 5, 6, 7, 7, 7, 9, 12};
        System.out.println(exist(arr, 5));
        System.out.println(exist(arr, 8));
        System.out.println(exist(arr, 9));
    }
}

2)在一个有序数组中,找>=某个数最左侧的位置

package complexity01;
/**
 * @author Corley
 * @date 2021/10/4 9:20
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BinarySearchNearLeft {
    public static int nearestIndex(int[] arr, int num) {
        int index = -1;
        if (null == arr || 0 == arr.length) {
            return index;
        }
        int L = 0, R = arr.length - 1;
        int mid;
        while (L <= R) {
            mid = L + ((R - L) >> 1);
            if (arr[mid] >= num) {
                index = mid;
                R = mid - 1;
            } else {
                L = mid + 1;
            }
        }
        return index;
    }
    public static void main(String[] args) {
        int[] arr = {0, 2, 5, 5, 6, 7, 7, 7, 9, 12};
        System.out.println(nearestIndex(arr, 5));
        System.out.println(nearestIndex(arr, 8));
        System.out.println(nearestIndex(arr, 9));
    }
}

3)在一个有序数组中,找<=某个数最右侧的位置

package complexity01;
/**
 * @author Corley
 * @date 2021/10/4 9:30
 * @description LeetCodeAlgorithmZuo-complexity01
 */
public class BinarySearchNearRight {
    public static int nearestIndex(int[] arr, int num) {
        int index = -1;
        if (null == arr || 0 == arr.length) {
            return index;
        }
        int L = 0, R = arr.length - 1;
        int mid;
        while (L <= R) {
            mid = L + ((R - L) >> 1);
            if (arr[mid] <= num) {
                index = mid;
                L = mid + 1;
            } else {
                R = mid - 1;
            }
        }
        return index;
    }
    public static void main(String[] args) {
        int[] arr = {0, 2, 5, 5, 6, 7, 7, 7, 9, 12};
        System.out.println(nearestIndex(arr, 5));
        System.out.println(nearestIndex(arr, 8));
        System.out.println(nearestIndex(arr, 9));
    }
}


相关文章
|
16天前
|
算法 数据处理 C语言
C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合
本文深入解析了C语言中的位运算技巧,涵盖基本概念、应用场景、实用技巧及示例代码,并讨论了位运算的性能优势及其与其他数据结构和算法的结合,旨在帮助读者掌握这一高效的数据处理方法。
27 1
|
20天前
|
机器学习/深度学习 算法 数据挖掘
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构
K-means聚类算法是机器学习中常用的一种聚类方法,通过将数据集划分为K个簇来简化数据结构。本文介绍了K-means算法的基本原理,包括初始化、数据点分配与簇中心更新等步骤,以及如何在Python中实现该算法,最后讨论了其优缺点及应用场景。
63 4
|
17天前
|
存储 算法 搜索推荐
Python 中数据结构和算法的关系
数据结构是算法的载体,算法是对数据结构的操作和运用。它们共同构成了计算机程序的核心,对于提高程序的质量和性能具有至关重要的作用
|
17天前
|
数据采集 存储 算法
Python 中的数据结构和算法优化策略
Python中的数据结构和算法如何进行优化?
|
25天前
|
算法
数据结构之路由表查找算法(深度优先搜索和宽度优先搜索)
在网络通信中,路由表用于指导数据包的传输路径。本文介绍了两种常用的路由表查找算法——深度优先算法(DFS)和宽度优先算法(BFS)。DFS使用栈实现,适合路径问题;BFS使用队列,保证找到最短路径。两者均能有效查找路由信息,但适用场景不同,需根据具体需求选择。文中还提供了这两种算法的核心代码及测试结果,验证了算法的有效性。
86 23
|
25天前
|
算法
数据结构之蜜蜂算法
蜜蜂算法是一种受蜜蜂觅食行为启发的优化算法,通过模拟蜜蜂的群体智能来解决优化问题。本文介绍了蜜蜂算法的基本原理、数据结构设计、核心代码实现及算法优缺点。算法通过迭代更新蜜蜂位置,逐步优化适应度,最终找到问题的最优解。代码实现了单链表结构,用于管理蜜蜂节点,并通过适应度计算、节点移动等操作实现算法的核心功能。蜜蜂算法具有全局寻优能力强、参数设置简单等优点,但也存在对初始化参数敏感、计算复杂度高等缺点。
57 20
|
16天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
43 1
|
25天前
|
机器学习/深度学习 算法 C++
数据结构之鲸鱼算法
鲸鱼算法(Whale Optimization Algorithm,WOA)是由伊朗研究员Seyedali Mirjalili于2016年提出的一种基于群体智能的全局优化算法,灵感源自鲸鱼捕食时的群体协作行为。该算法通过模拟鲸鱼的围捕猎物和喷出气泡网的行为,结合全局搜索和局部搜索策略,有效解决了复杂问题的优化需求。其应用广泛,涵盖函数优化、机器学习、图像处理等领域。鲸鱼算法以其简单直观的特点,成为初学者友好型的优化工具,但同时也存在参数敏感、可能陷入局部最优等问题。提供的C++代码示例展示了算法的基本实现和运行过程。
44 0
|
25天前
|
算法 vr&ar 计算机视觉
数据结构之洪水填充算法(DFS)
洪水填充算法是一种基于深度优先搜索(DFS)的图像处理技术,主要用于区域填充和图像分割。通过递归或栈的方式探索图像中的连通区域并进行颜色替换。本文介绍了算法的基本原理、数据结构设计(如链表和栈)、核心代码实现及应用实例,展示了算法在图像编辑等领域的高效性和灵活性。同时,文中也讨论了算法的优缺点,如实现简单但可能存在堆栈溢出的风险等。
37 0
|
11天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。

热门文章

最新文章