代码案例详解!如何让机器学习模型自解释!⛵

本文涉及的产品
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,5000CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
简介: 本文讲解一种比较全能的『机器学习模型可解释性』方法——SHAP。通过调用Python的SHAP工具库,对机器学习模型做可解释性分析,判断不同特征对于当前模型的重要程度。
d26ef9e3836dad9ecc43e05c49f713ce.png
💡 作者: 韩信子@ ShowMeAI
📘 机器学习实战系列https://www.showmeai.tech/tutorials/41
📘 本文地址https://www.showmeai.tech/article-detail/337
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容
167ca463193b3da47a89ddec74ac4ad4.png

近年来,可解释的人工智能(XAI)和可解释的机器学习引起了越来越多的关注,因为直接把模型当做黑箱使用信任度和可控度都会受影响。有一些领域,模型的可解释性更加重要,例如在医疗领域,患者会质疑为什么模型诊断出他们患有某种疾病。

在本篇内容中, ShowMeAI 将给大家讲解一个流行的模型解释方法 SHAP(SHapley Additive exPlanations),并基于实际案例讲解如何基于工具库对模型做解释。

876c5df29bbdd943f8696719d48bf536.png

💡 模型可解释方法的划分

我们对各类模型可解释方法进行划分,有以下一些划分维度:

  • 模型无关和模型特定:一些方法可用于各种模型,而另一些方法是为解释特定模型而创建的。
  • 全局和局部解释:本地意味着进行分析以了解如何做出特定预测。 另一方面,全局解释研究了影响所有预测的因素。
  • 基于模型和事后归因:基于模型的模型是我们可以直接理解的模型,例如线性回归模型。 另一类是事后解释模型的归因方法,大多数方法都属于这一类。

💡 SHAP 原理

📘SHAP 全称是 SHapley Additive exPlanation,是比较全能的模型可解释性的方法,既可作用于全局解释,也可以局部解释,即单个样本来看,模型给出的预测值和某些特征可能的关系,可以用SHAP来解释。

6301d1e6b5140def5a9b92f72bcd6799.png

SHAP 属于模型事后解释的方法,核心思想是计算特征对模型输出的边际贡献,再从全局和局部两个层面对『黑盒模型』进行解释。SHAP 构建一个加性的解释模型,所有的特征都视为『贡献者』。

对于每个预测样本,模型都产生一个预测值,SHAP value 就是该样本中每个特征所分配到的数值。

4c9f8964e70f99fa58991bd44554bc4e.png

基本思想:计算一个特征加入到模型时的边际贡献,然后考虑到该特征在所有的特征序列的情况下不同的边际贡献,取均值,即某该特征的 SHAP baseline value。

💡 案例实战讲解

我们来拿一个场景案例讲解一下SHAP如何进行模型可解释分析,用到的数据是人口普查数据,我们会调用 Python 的工具库库 SHAP 直接分析模型。

💦 数据说明

ShowMeAI在本例中使用到的是 🏆美国人口普查收入数据集,任务是根据人口基本信息预测其年收入是否可能超过 50,000 美元,是一个二分类问题。

16a2f3f34b9dae14dc11035b5a7ca08a.png

数据集可以在以下地址下载: 📘 https://archive.ics.uci.edu/ml/datasets/Adult 📘

数据从美国1994年人口普查数据库抽取而来,可以用来预测居民收入是否超过50K/year。

  • 该数据集类变量为年收入是否超过50k,属性变量包含年龄、工种、学历、职业、人种等重要信息,值得一提的是,14个属性变量中有7个类别型变量。
  • 数据集各属性是:其中序号0~13是属性,14是类别。
字段序号 字段名 含义 类型
0 age 年龄 Double
1 workclass 工作类型* string
2 fnlwgt 序号 string
3 education 教育程度* string
4 education_num 受教育时间 double
5 maritial_status 婚姻状况* string
6 occupation 职业* string
7 relationship 关系* string
8 race 种族* string
9 sex 性别* string
10 capital_gain 资本收益 string
11 capital_loss 资本损失 string
12 hours_per_week 每周工作小时数 double
13 native_country 原籍* string
14(label) income 收入标签 string
f0306dabb8d65c2c68286eb403b0984a.png

💦 SHAP计算 & 模型解释

from sklearn.model_selection import train_test_split
import lightgbm as lgb
import shap

shap.initjs()
X,y = shap.datasets.adult()
X_display,y_display = shap.datasets.adult(display=True)# create a train/test split

# 训练集与测试集切分及处理
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=7)
d_train = lgb.Dataset(X_train, label=y_train)
d_test = lgb.Dataset(X_test, label=y_test)# create a simple model

# 模型参数
params = {
    "max_bin": 512,
    "learning_rate": 0.05,
    "boosting_type": "gbdt",
    "objective": "binary",
    "metric": "binary_logloss",
    "num_leaves": 10,
    "verbose": -1,
    "min_data": 100,
    "boost_from_average": True
}

# 模型训练
model = lgb.train(params, d_train, 10000, valid_sets=[d_test], early_stopping_rounds=50, verbose_eval=1000)# explain the model

# 模型解释
explainer = shap.TreeExplainer(model)
shap_values = explainer.shap_values(X)# visualize the impact of each features
shap.summary_plot(shap_values, X)
762d8bc6163332f8265b88d2ec5a731e.png
355ff908329422f0c7e2597d30bf96c0.png

上图中的SHAP结果值,告诉我们不同的特征维度(输入)对于当前模型的重要程度,包括总体的重要程度,以及对每个类别的判定的影响程度。

参考资料

推荐阅读

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
13天前
|
机器学习/深度学习 人工智能 分布式计算
使用PAI+LLaMA Factory 微调 Qwen2-VL 模型,搭建文旅领域知识问答机器人
本次教程介绍了如何使用 PAI 和 LLaMA Factory 框架,基于全参方法微调 Qwen2-VL模型,使其能够进行文旅领域知识问答,同时通过人工测试验证了微调的效果。
|
22天前
|
机器学习/深度学习 算法 数据可视化
机器学习模型中特征贡献度分析:预测贡献与错误贡献
本文将探讨特征重要性与特征有效性之间的关系,并引入两个关键概念:预测贡献度和错误贡献度。
64 3
|
17天前
|
机器学习/深度学习 数据可视化 JavaScript
探索机器学习模型的可视化技术
【9月更文挑战第23天】在数据科学中,理解和解释机器学习模型的决策过程是至关重要的。本文将介绍几种流行的可视化工具和库,如TensorBoard、D3.js等,帮助读者更好地理解模型内部工作原理及其预测结果。通过实例演示如何使用这些工具进行模型可视化,增强模型的可解释性。
|
1月前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习模型之深度神经网络的特点
深度神经网络(Deep Neural Networks, DNNs)是一类机器学习模型,通过多个层级(层)的神经元来模拟人脑的工作方式,从而实现复杂的数据处理和模式识别任务。
36 1
|
1月前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。
|
1月前
|
机器学习/深度学习 算法 前端开发
R语言基础机器学习模型:深入探索决策树与随机森林
【9月更文挑战第2天】决策树和随机森林作为R语言中基础且强大的机器学习模型,各有其独特的优势和适用范围。了解并熟练掌握这两种模型,对于数据科学家和机器学习爱好者来说,无疑是一个重要的里程碑。希望本文能够帮助您更好地理解这两种模型,并在实际项目中灵活应用。
|
1月前
|
机器学习/深度学习 数据采集 存储
一文读懂蒙特卡洛算法:从概率模拟到机器学习模型优化的全方位解析
蒙特卡洛方法起源于1945年科学家斯坦尼斯劳·乌拉姆对纸牌游戏中概率问题的思考,与约翰·冯·诺依曼共同奠定了该方法的理论基础。该方法通过模拟大量随机场景来近似复杂问题的解,因命名灵感源自蒙特卡洛赌场。如今,蒙特卡洛方法广泛应用于机器学习领域,尤其在超参数调优、贝叶斯滤波等方面表现出色。通过随机采样超参数空间,蒙特卡洛方法能够高效地找到优质组合,适用于处理高维度、非线性问题。本文通过实例展示了蒙特卡洛方法在估算圆周率π和优化机器学习模型中的应用,并对比了其与网格搜索方法的性能。
183 1
|
2月前
|
机器学习/深度学习 PHP 开发者
探索PHP中的面向对象编程构建你的首个机器学习模型:以Python和scikit-learn为例
【8月更文挑战第30天】在PHP的世界中,面向对象编程(OOP)是一块基石,它让代码更加模块化、易于管理和维护。本文将深入探讨PHP中面向对象的魔法,从类和对象的定义开始,到继承、多态性、封装等核心概念,再到实战中如何应用这些理念来构建更健壮的应用。我们将通过示例代码,一起见证PHP中OOP的魔力,并理解其背后的设计哲学。
|
2月前
|
机器学习/深度学习 数据采集 算法
机器学习到底是什么?附sklearn代码
机器学习到底是什么?附sklearn代码

热门文章

最新文章

相关产品

  • 人工智能平台 PAI