【数据结构基础】之图的介绍,生动形象,通俗易懂,算法入门必看(上)

简介: 【数据结构基础】之图的介绍,生动形象,通俗易懂,算法入门必看(上)

一、图的基本概念


1️⃣图的定义


定义: 图(graph)是由一些点(vertex)和这些点之间的连线(edge)所组成的;其中,点通常被成为"顶点(vertex)“,而点与点之间的连线则被成为"边或弧”(edege)。通常记为,G=(V,E)。


2️⃣图的种类


根据边是否有方向,将图可以划分为:无向图 和有向图。


🍀(1)无向图


f7690e3d20b5425b8b171c280040c16e.png


上面的图G0是无向图,无向图的所有的边都是不区分方向的。G0=(V1,{E1})。其中:


(1)V1={A,B,C,D,E,F}。 V1表示由"A,B,C,D,E,F"几个顶点组成的集合。

(2)E1={(A,B),(A,C),(B,C),(B,E),(B,F),(C,F), (C,D),(E,F),(C,E)}。E1是由边(A,B),边(A,C)…等组成的集合。其中,(A,C)表示由顶点A和顶点C连接成的边。


🍀(2)有向图


c8054d7d871b45dcab942627f0f361f7.png


上面的图G2是有向图。和无向图不同,有向图的所有的边都是有方向的! G2=(V2,{A2})。其中:


(1)V2={A,C,B,F,D,E,G}。 V2表示由"A,B,C,D,E,F,G"几个顶点组成的集合。

(2)A2={<A,B>,<B,C>,<B,F>,<B,E>,<C,E>,<E,D>,<D,C>,<E,B>,<F,G>}。E1是由矢量<A,B>,矢量<B,C>…等等组成的集合。其中,矢量<A,B)表示由"顶点A"指向"顶点C"的有向边。


3️⃣邻接点和度


🍀(1)邻接点


(1)一条边上的两个顶点叫做邻接点。 例如,上面无向图G0中的顶点A和顶点C就是邻接点。

(2)在有向图中,除了邻接点之外;还有"入边"和"出边"的概念。顶点的入边,是指以该顶点为终点的边。而顶点的出边,则是指以该顶点为起点的边。例如,上面有向图G2中的B和E是邻接点;<B,E>是B的出边,还是E的入边。


🍀(2)度


(1)在无向图中,某个顶点的度是邻接到该顶点的边(或弧)的数目。 例如,上面无向图G0中顶点A的度是2。

(2)在有向图中,度还有"入度"和"出度"之分。某个顶点的入度,是指以该顶点为终点的边的数目。而顶点的出度,则是指以该顶点为起点的边的数目。 顶点的度=入度+出度。例如,上面有向图G2中,顶点B的入度是2,出度是3;顶点B的度=2+3=5。


4️⃣路径和回路


路径: 如果顶点(Vm)到顶点(Vn)之间存在一个顶点序列。则表示Vm到Vn是一条路径。

路径长度: 路径中"边的数量"。

简单路径: 若一条路径上顶点不重复出现,则是简单路径。

回路: 若路径的第一个顶点和最后一个顶点相同,则是回路。

简单回路: 第一个顶点和最后一个顶点相同,其它各顶点都不重复的回路则是简单回路。


5️⃣连通图和连通分量


  • 连通图: 对无向图而言,任意两个顶点之间都存在一条无向路径,则称该无向图为连通图。 对有向图而言,若图中任意两个顶点之间都存在一条有向路径,则称该有向图为强连通图。
  • 连通分量: 非连通图中的各个连通子图称为该图的连通分量。


6️⃣权


在学习"哈夫曼树"的时候,了解过"权"的概念。图中权的概念与此类似。


be25db80b7a845f0a64f3b512635aee9.png



上面就是一个带权的图。


二、图的存储结构


图的存储结构,常用的是"邻接矩阵"和"邻接表"。


1️⃣邻接矩阵


邻接矩阵是指用矩阵来表示图。它是采用矩阵来描述图中顶点之间的关系(及弧或边的权)。

假设图中顶点数为n,则邻接矩阵定义为:

d7bbfe59ff8948db80b2fb15c7229ab3.png


下面通过示意图来进行解释。


24869d1bc89a40d7b2c990aba3ff3d63.png


图中的G1是无向图和它对应的邻接矩阵。

91c9c4115214488fb37c57c10b0c0833.png

图中的G2是无向图和它对应的邻接矩阵。


通常采用两个数组来实现邻接矩阵:一个一维数组用来保存顶点信息,一个二维数组来用保存边的信息。


邻接矩阵的缺点就是比较耗费空间。


2️⃣邻接表


邻接表是图的一种链式存储表示方法。它是改进后的"邻接矩阵",它的缺点是不方便判断两个顶点之间是否有边,但是相对邻接矩阵来说更省空间。

0c93e63fb7b2425bb5e906ec89844ce4.png

图中的G1是无向图和它对应的邻接矩阵。

209567ba31344e8fb65916fd0ef5ddfb.png


图中的G2是无向图和它对应的邻接矩阵。


三、图的遍历


对于图而言,我们常用的遍历方式有bfs和dfs两种:


  • bfs:广度优先搜索算法,英文Breadth First Search。广度优先搜索会优先访问当前顶点的所有邻接结点。
  • dfs:深度优先搜索算法,英文Depth First Search。深度优先搜索会优先顺延访问当前节点分支进行访问,直到不能深入,每个节点只访问一次。


1️⃣广度优先搜索


🍀(1)广度优先搜索介绍


广度优先搜索算法(Breadth First Search),又称为"宽度优先搜索"或"横向优先搜索",简称BFS。

它的思想是:从图中某顶点v出发,在访问了v之后依次访问v的各个未曾访问过的邻接点,然后分别从这些邻接点出发依次访问它们的邻接点,并使得“先被访问的顶点的邻接点先于后被访问的顶点的邻接点被访问,直至图中所有已被访问的顶点的邻接点都被访问到。如果此时图中尚有顶点未被访问,则需要另选一个未曾被访问过的顶点作为新的起始点,重复上述过程,直至图中所有顶点都被访问到为止。

换句话说,广度优先搜索遍历图的过程是以v为起点,由近至远,依次访问和v有路径相通且路径长度为1,2…的顶点。


🍀(2)广度优先搜索图解


无向图的广度优先搜索:


7a7d171d6f9745998594ac00db7d2982.png


第1步:访问A。

第2步:依次访问C,D,F。在访问了A之后,接下来访问A的邻接点。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,C在"D和F"的前面,因此,先访问C。再访问完C之后,再依次访问D,F。

第3步:依次访问B,G。在第2步访问完C,D,F之后,再依次访问它们的邻接点。首先访问C的邻接点B,再访问F的邻接点G。

第4步:访问E。 在第3步访问完B,G之后,再依次访问它们的邻接点。只有G有邻接点E,因此访问G的邻接点E。

因此访问顺序是:A -> C -> D -> F -> B -> G -> E


有向图的广度优先搜索:


eb84145591af4b3eb6ef48006b9a7bc1.png


第1步:访问A。

第2步:访问B。

第3步:依次访问C,E,F。在访问了B之后,接下来访问B的出边的另一个顶点,即C,E,F。前面已经说过,在本文实现中,顶点ABCDEFG按照顺序存储的,因此会先访问C,再依次访问E,F。

第4步:依次访问D,G。 在访问完C,E,F之后,再依次访问它们的出边的另一个顶点。还是按照C,E,F的顺序访问,C的已经全部访问过了,那么就只剩下E,F;先访问E的邻接点D,再访问F的邻接点G。

因此访问顺序是:A -> B -> C -> E -> F -> D -> G


🍀(3)广度优先搜索代码实现

public class Graph {
    /**
     * 定义顶点的抽象
     * @param <T>
     */
    public static class Vertex<T>{
        // 要保存的数据
        private T t;
        // 其他和我管理的邻接节点
        private List<Vertex<T>> neighborList;
        private boolean visited = false;
        public Vertex(T t) {
            this.t = t;
        }
    }
    // bfs 广度优先遍历算法
    public static <T> void bfs(Vertex<T> vertex){
        // 1、定义一个临时存储的空间,使用队列
        Queue<Vertex<T>> queue = new ArrayBlockingQueue<>(8);
        // 2、增加一个用来保存已经遍历过的数据的集合
        HashSet<Vertex<T>> mome = new HashSet<>(8);
        // 3、将第一个顶点放入队列
        queue.add(vertex);
        while (!queue.isEmpty()){
            // 将第一个元素拿出来
            Vertex<T> temp = queue.poll();
            // 进行操作
            if (!mome.contains(temp)){
                System.out.println(temp.t);
                mome.add(temp);
            }
            // 将他所有的邻接节点放进去
            if(temp.neighborList != null){
                queue.addAll(temp.neighborList);
            }
        }
    }
}


相关文章
|
2月前
|
存储 人工智能 算法
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
这篇文章详细介绍了Dijkstra和Floyd算法,这两种算法分别用于解决单源和多源最短路径问题,并且提供了Java语言的实现代码。
79 3
数据结构与算法细节篇之最短路径问题:Dijkstra和Floyd算法详细描述,java语言实现。
|
2月前
|
存储 算法 Java
Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性
Java Set因其“无重复”特性在集合框架中独树一帜。本文解析了Set接口及其主要实现类(如HashSet、TreeSet)如何通过特定数据结构和算法确保元素唯一性,并提供了最佳实践建议,包括选择合适的Set实现类和正确实现自定义对象的hashCode()与equals()方法。
35 4
|
2月前
|
机器学习/深度学习 搜索推荐 算法
探索数据结构:初入算法之经典排序算法
探索数据结构:初入算法之经典排序算法
|
2月前
|
存储 机器学习/深度学习 算法
探索数据结构:入门及复杂度的解锁
探索数据结构:入门及复杂度的解锁
|
2月前
|
算法 Java 索引
数据结构与算法学习十五:常用查找算法介绍,线性排序、二分查找(折半查找)算法、差值查找算法、斐波那契(黄金分割法)查找算法
四种常用的查找算法:顺序查找、二分查找(折半查找)、插值查找和斐波那契查找,并提供了Java语言的实现代码和测试结果。
22 0
|
2月前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
10天前
|
算法 数据安全/隐私保护 索引
OFDM系统PAPR算法的MATLAB仿真,对比SLM,PTS以及CAF,对比不同傅里叶变换长度
本项目展示了在MATLAB 2022a环境下,通过选择映射(SLM)与相位截断星座图(PTS)技术有效降低OFDM系统中PAPR的算法实现。包括无水印的算法运行效果预览、核心程序及详尽的中文注释,附带操作步骤视频,适合研究与教学使用。
|
18天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
19天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
20天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
下一篇
无影云桌面