云原生数据仓库 AnalyticDB MySQL 版 _解析与实践3|学习笔记(四)

本文涉及的产品
云原生数据仓库AnalyticDB MySQL版,基础版 8ACU 100GB 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
简介: 云原生数据仓库 AnalyticDB MySQL 版 _解析与实践3

开发者学堂课程【数据仓库 ACP 认证课程:快速学习云原生数据仓库 AnalyticDB MySQL 版 _解析与实践3】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/928/detail/14625


云原生数据仓库 AnalyticDB MySQL 版_解析与实践3


五、试题


1. 在 AnalyticDB MySQL 中,_____尽可能需要将 Join 的字段作为分布键。例如订单表和用户表通过 user_id 做 join,这两张表都可用 user_id 做分布。

A,.本地化原则

B. 均匀性原则

C. 分布式原则

D. 复制原则

解析:

A,此种方式可以保证 join 在本节点完成,不需要做数据的传输,又例如提高性能。

 

2. AnalyticDB MySQL 版中,冷数据指的是访问频次较低的数据,采用______存储,满足存储空间的需求。

A. SSD

B. HDD

C. SSHD

D. SHDD

解析:

B,AnalyticDB MySQL 一个显著的特征是实现了冷热数据分层,在创建表时,可以指定表是以热、冷还是温数据存储。热数据是存储在 SSD(准确的说是 ESSD)冷数据是存在 OSS。

 

3. AnalyticDB MySQL 版中,为什么需要全量同步?

A. 源库历史数据的 binlog 可能已经删除

B. 开启同步钱源表中已有数据,必须通过全量数据同步来同步

C. 全量同步可以并行拉取和同步,大量历史数据的同步性能较好

D. AnalyticDB MySQL 端的表结构需要全量同步来创建。

解析:

AC,源库历史数据的 binlog 可能已经删除,此时无法通过日志触放的方式来完成数据的导入,只能通过全量方式来实现。同时,全量同步根据主键来进行划分,划分之后每一部分数据可以并行来处理,具有较好的性能。

 

4. AnalyticDB MySQL 版中,下列有关查询优化手段说法正确的是_______。

A. 查询过滤条件中指定分部间或分区建可以进行分区裁剪,减少扫描数据量。

B. 过滤条件中的列确保创建索引,才能支持条件下推

C. 对于筛选率比较低的过滤条件,可以指定列 no-index 进行调选

D. 聚集索引可以建多个,比如既要按照卖家id频繁访问,又要按照品牌id频繁访问,那可以建2个聚集索引

解析:

ABC,一个表上只能创建一个聚集索引,因为聚集索引会造成数据重分布,如果有多个聚集索引,数据不知按哪个进行分布。

 

 

六、回顾与总结

image.png

相关实践学习
AnalyticDB MySQL海量数据秒级分析体验
快速上手AnalyticDB MySQL,玩转SQL开发等功能!本教程介绍如何在AnalyticDB MySQL中,一键加载内置数据集,并基于自动生成的查询脚本,运行复杂查询语句,秒级生成查询结果。
阿里云云原生数据仓库AnalyticDB MySQL版 使用教程
云原生数据仓库AnalyticDB MySQL版是一种支持高并发低延时查询的新一代云原生数据仓库,高度兼容MySQL协议以及SQL:92、SQL:99、SQL:2003标准,可以对海量数据进行即时的多维分析透视和业务探索,快速构建企业云上数据仓库。 了解产品 https://www.aliyun.com/product/ApsaraDB/ads
相关文章
|
17天前
|
运维 持续交付 云计算
深入解析云计算中的微服务架构:原理、优势与实践
深入解析云计算中的微服务架构:原理、优势与实践
45 1
|
9天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
83 30
|
4天前
|
DataWorks 数据挖掘 大数据
方案实践测评 | DataWorks集成Hologres构建一站式高性能的OLAP数据分析
DataWorks在任务开发便捷性、任务运行速度、产品使用门槛等方面都表现出色。在数据处理场景方面仍有改进和扩展的空间,通过引入更多的智能技术、扩展数据源支持、优化任务调度和可视化功能以及提升团队协作效率,DataWorks将能够为企业提供更全面、更高效的数据处理解决方案。
|
9天前
|
存储 网络协议 编译器
【C语言】深入解析C语言结构体:定义、声明与高级应用实践
通过根据需求合理选择结构体定义和声明的放置位置,并灵活结合动态内存分配、内存优化和数据结构设计,可以显著提高代码的可维护性和运行效率。在实际开发中,建议遵循以下原则: - **模块化设计**:尽可能封装实现细节,减少模块间的耦合。 - **内存管理**:明确动态分配与释放的责任,防止资源泄漏。 - **优化顺序**:合理排列结构体成员以减少内存占用。
67 14
|
13天前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
89 15
|
16天前
|
弹性计算 持续交付 API
构建高效后端服务:微服务架构的深度解析与实践
在当今快速发展的软件行业中,构建高效、可扩展且易于维护的后端服务是每个技术团队的追求。本文将深入探讨微服务架构的核心概念、设计原则及其在实际项目中的应用,通过具体案例分析,展示如何利用微服务架构解决传统单体应用面临的挑战,提升系统的灵活性和响应速度。我们将从微服务的拆分策略、通信机制、服务发现、配置管理、以及持续集成/持续部署(CI/CD)等方面进行全面剖析,旨在为读者提供一套实用的微服务实施指南。
|
10天前
|
存储 缓存 Python
Python中的装饰器深度解析与实践
在Python的世界里,装饰器如同一位神秘的魔法师,它拥有改变函数行为的能力。本文将揭开装饰器的神秘面纱,通过直观的代码示例,引导你理解其工作原理,并掌握如何在实际项目中灵活运用这一强大的工具。从基础到进阶,我们将一起探索装饰器的魅力所在。
|
11天前
|
机器学习/深度学习 搜索推荐 API
淘宝/天猫按图搜索(拍立淘)API的深度解析与应用实践
在数字化时代,电商行业迅速发展,个性化、便捷性和高效性成为消费者新需求。淘宝/天猫推出的拍立淘API,利用图像识别技术,提供精准的购物搜索体验。本文深入探讨其原理、优势、应用场景及实现方法,助力电商技术和用户体验提升。
|
17天前
|
安全 持续交付 Docker
深入理解并实践容器化技术——Docker 深度解析
深入理解并实践容器化技术——Docker 深度解析
38 2
|
10天前
|
监控 搜索推荐 测试技术
电商API的测试与用途:深度解析与实践
在电子商务蓬勃发展的今天,电商API成为连接电商平台、商家、消费者和第三方开发者的重要桥梁。本文深入探讨了电商API的核心功能,包括订单管理、商品管理、用户管理、支付管理和物流管理,并介绍了有效的测试技巧,如理解API文档、设计测试用例、搭建测试环境、自动化测试、压力测试、安全性测试等。文章还详细阐述了电商API的多样化用途,如商品信息获取、订单管理自动化、用户数据管理、库存同步、物流跟踪、支付处理、促销活动管理、评价管理、数据报告和分析、扩展平台功能及跨境电商等,旨在为开发者和电商平台提供有益的参考。
17 0

推荐镜像

更多