基于花朵授粉算法的无线传感器网络部署优化附Matlab代码

简介: 基于花朵授粉算法的无线传感器网络部署优化附Matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

随着无线传感器网络(Wireless Sensor Network,WSN)技术的不断发展,越来越多的WSN技术已经应用到了智能家居,智慧交通等领域.WSN属于一种重要的ad hoc网络,它由很多具有感知和数据处理能力的传感节点以自组织或多跳的方式搭建.目前,WSN的研究工作主要集中在网络技术和通信协议方面,关于传感器网络部署优化的研究还很少.在空旷的农场或森林部署WSN,一般做法是通过飞机进行高空随机抛撒.但是,这种方法可能出现大量的多余节点和覆盖漏洞.因此,如何用尽量少的传感节点感知最大的区域是WSN部署优化中一个亟待研究的问题.在广阔的农场环境或森林中,需要准备许多传感节点,节点大部分靠电池供电,但是,电池能量是有限的,并且无法更换.因此,如何使用相同数量的节点,达到最长的网络寿命成为WSN部署优化中另一个倍受瞩目的问题.

⛄ 部分代码

%==========================================================================

% 算法说明:荧火虫算法(GSO:Glowworm swarm optimisation:a new method for optimising mutlti-modal functions)

% =========================================================================

clc

clear;%清除变量

close all;

% ================================初始化开始================================

domx=[-3,3;-3,3];%定义域

%domx=[-2.048,2.048;-2.048,2.048];


rho   =0.4; %荧光素挥发因子

gamma =0.6; %适应度提取比例

beta  =0.08;%邻域变化率

nt    =5;   %邻域阀值(邻域荧火虫数)

s     =0.01;%步长

iot0  =5;   %荧光素浓度

rs    =3;   %3;%感知半径

r0    =1.5; %3;%决策半径

% ================================初始化结束================================


% ===============================分配空间开始===============================

m =size(domx,1);    %函数空间维数

n =50;              %萤火虫个数


gaddress =zeros(n,m);%分配荧火虫地址空间

ioti     =zeros(n,1);    %分配荧光素存放空间

rdi      =zeros(n,1);     %分配荧火虫决策半径存放空间

% ===============================分配空间结束===============================

figure(1);

sign_first = 1;

step_track = 0;

x = -3:0.1:3;

y = -3:0.1:3;

[xx,yy] = meshgrid(x,y);

j1=3*(1-xx).^2.*exp(-(xx.^2+(yy+1).^2));

j2=10*(xx./5-xx.^3-yy.^5).*exp(-(xx.^2+yy.^2));

j3=(1/3)*exp(-((xx+1).^2+yy));

zz=j1-j2-j3;

figure(1);

surf(xx,yy,zz);

hold on

% ===========================荧火虫常量初始化开始============================

%1.初始化地址

for i=1:m

   gaddress(:,i)=domx(i,1)+(domx(i,2)-domx(i,1))*rand(n,1);

end

gvalue = maxfun(gaddress);

gbest_old = max(gvalue);

%

%可视化

plot3(gaddress(:,1),gaddress(:,2),gvalue(:),'b*');

drawnow;

pause(1);

%

%2.初始化荧光素

ioti(:,1)=iot0;

%3.初始化决策半径

rdi(:,1)=r0;

iter_max=500;%最大迭代次数

t=1;%迭代累计

unchange = 0;

% ===========================荧火虫常量初始化结束============================


% =============================iter_max迭代开始=============================

while(t<=iter_max) && (unchange<60)

   %1.更新荧光素

   ioti=max(0,(1-rho)*ioti+gamma*maxfun(gaddress));

   %2.各荧火虫移动过程开始

   for i=1:n

       %2.1 决策半径内找更优点

       Nit=[];%存放荧火虫序号

       for j=1:n

           if (norm(gaddress(j,:)-gaddress(i,:))<rdi(i))&&(ioti(i,1)<ioti(j,1))

               Nit(numel(Nit)+1)=j;

           end

       end

       %2.2 找下一步移动的点开始

       if length(Nit)>0 %先判断Nit个数不为0

           Nitioti=ioti(Nit,1);%选出Nit荧光素

           SumNitioti=sum(Nitioti);%Nit荧光素和

           Molecular=Nitioti-ioti(i,1);%分子

           Denominator=SumNitioti-ioti(i,1);%分母

           Pij=Molecular./Denominator;%计算Nit各元素被选择概率

           Pij=cumsum(Pij);%累计

           Pij=Pij./Pij(end);%归一化

           Pos=find(rand<Pij);%确定位置

           j=Nit(Pos(1));%确定j的位置

           %荧火虫i向j移动一小步

           gaddress(i,:)=gaddress(i,:)+s*(gaddress(j,:)-gaddress(i,:))/norm(gaddress(j,:)-gaddress(i,:));

           gaddress(i,:)=range(gaddress(i,:),domx);%限制范围

           

           %

           %更新决策半径

           rdi(i)=rdi(i)+beta*(nt-length(Nit));

           if rdi(i,1)<0

               rdi(i,1)=0;

           end

           if rdi(i,1)>rs

               rdi(i,1)=rs;

⛄ 运行结果

⛄ 参考文献

[1]郎健. 无线传感器网络部署优化研究与仿真[D]. 北京工业大学.

[2]王振东, 谢华茂, 胡中栋,等. 改进花朵授粉算法的无线传感器网络部署优化[J]. 系统仿真学报, 2021.

⛄ Matlab代码关注

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


目录
打赏
0
0
0
0
874
分享
相关文章
|
5天前
|
基于粒子群优化的模糊控制器设计与MATLAB实现
基于粒子群优化的模糊控制器设计与MATLAB实现
25 0
基于WOA鲸鱼优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB 2022a/2024b实现,采用WOA优化的BiLSTM算法进行序列预测。核心代码包含完整中文注释与操作视频,展示从参数优化到模型训练、预测的全流程。BiLSTM通过前向与后向LSTM结合,有效捕捉序列前后文信息,解决传统RNN梯度消失问题。WOA优化超参数(如学习率、隐藏层神经元数),提升模型性能,避免局部最优解。附有运行效果图预览,最终输出预测值与实际值对比,RMSE评估精度。适合研究时序数据分析与深度学习优化的开发者参考。
基于GA遗传优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本内容包含基于BiLSTM与遗传算法(GA)的算法介绍及实现。算法通过MATLAB2022a/2024b运行,核心为优化BiLSTM超参数(如学习率、神经元数量),提升预测性能。LSTM解决传统RNN梯度问题,捕捉长期依赖;BiLSTM双向处理序列,融合前文后文信息,适合全局信息任务。附完整代码(含注释)、操作视频及无水印运行效果预览,适用于股票预测等场景,精度优于单向LSTM。
基于PSO粒子群优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本内容展示了一种基于粒子群优化(PSO)与时间卷积神经网络(TCN)的时间序列预测方法。通过 MATLAB2022a 实现,完整程序运行无水印,核心代码附详细中文注释及操作视频。算法利用 PSO 优化 TCN 的超参数(如卷积核大小、层数等),提升非线性时间序列预测性能。TCN 结构包含因果卷积层与残差连接,结合 LSTM 构建混合模型,经多次迭代选择最优超参数,最终实现更准确可靠的预测效果,适用于金融、气象等领域。
基于精英个体保留策略遗传优化的生产调度算法matlab仿真
本程序基于精英个体保留策略的遗传算法,实现生产调度优化。通过MATLAB仿真,输出收敛曲线与甘特图,直观展示调度结果与迭代过程。适用于复杂多约束生产环境,提升资源利用率与调度效率。
|
27天前
|
基于BigBangBigCrunch优化(BBBC)的目标函数求解算法matlab仿真
本程序基于BigBang-BigCrunch优化算法(BBBC)实现目标函数求解的MATLAB仿真,具备良好的全局搜索与局部收敛能力。程序输出适应度收敛曲线及多变量变化曲线,展示算法迭代过程中的优化趋势。使用MATLAB 2022A运行,通过图形界面直观呈现“大爆炸”与“大坍缩”阶段在解空间中的演化过程,适用于启发式优化问题研究与教学演示。
基于PSO粒子群优化的BiLSTM双向长短期记忆网络序列预测算法matlab仿真,对比BiLSTM和LSTM
本项目基于MATLAB2022a/2024b开发,结合粒子群优化(PSO)算法与双向长短期记忆网络(BiLSTM),用于优化序列预测任务中的模型参数。核心代码包含详细中文注释及操作视频,涵盖遗传算法优化过程、BiLSTM网络构建、训练及预测分析。通过PSO优化BiLSTM的超参数(如学习率、隐藏层神经元数等),显著提升模型捕捉长期依赖关系和上下文信息的能力,适用于气象、交通流量等场景。附有运行效果图预览,展示适应度值、RMSE变化及预测结果对比,验证方法有效性。
基于遗传优化ELM网络的时间序列预测算法matlab仿真
本项目实现了一种基于遗传算法优化的极限学习机(GA-ELM)网络时间序列预测方法。通过对比传统ELM与GA-ELM,验证了参数优化对非线性时间序列预测精度的提升效果。核心程序利用MATLAB 2022A完成,采用遗传算法全局搜索最优权重与偏置,结合ELM快速训练特性,显著提高模型稳定性与准确性。实验结果展示了GA-ELM在复杂数据中的优越表现,误差明显降低。此方法适用于金融、气象等领域的时间序列预测任务。
基于遗传优化算法的带时间窗多车辆路线规划matlab仿真
本程序基于遗传优化算法,实现带时间窗的多车辆路线规划,并通过MATLAB2022A仿真展示结果。输入节点坐标与时间窗信息后,算法输出最优路径规划方案。示例结果包含4条路线,覆盖所有节点并满足时间窗约束。核心代码包括初始化、适应度计算、交叉变异及局部搜索等环节,确保解的质量与可行性。遗传算法通过模拟自然进化过程,逐步优化种群个体,有效解决复杂约束条件下的路径规划问题。
基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法matlab仿真
本项目实现基于差分进化灰狼混合优化的SVM(DE-GWO-SVM)数据预测算法的MATLAB仿真,对比SVM和GWO-SVM性能。算法结合差分进化(DE)与灰狼优化(GWO),优化SVM参数以提升复杂高维数据预测能力。核心流程包括DE生成新种群、GWO更新位置,迭代直至满足终止条件,选出最优参数组合。适用于分类、回归等任务,显著提高模型效率与准确性,运行环境为MATLAB 2022A。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问