推荐引擎的算法原理|学习笔记

简介: 快速学习推荐引擎的算法原理

开发者学堂课程【场景实践 - 搭建个性化推荐引擎系统推荐引擎的算法原理】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/522/detail/7052


推荐引擎的算法原理


内容介绍:

一、推荐引擎的算法原理

二、基于人口统计学的推荐

三、基于内容的推荐

四、基于用户的协同过滤

五、基于物品的协同过滤


一、推荐引擎的算法原理

推荐引擎的主要推荐算法有如下四类:

1、基于人口统计学的推荐

2、基于内容的推荐

3、基于用户的协同过滤

4、基于物品的协同过滤


二、基于人口统计学的推荐

用户信息建模

计算用户相似度

根据相似用户推荐

image.png

首先,基于人口统计学的推荐及人口统计学的推荐技术是一种最容易实现的推荐方法,他只是简单的根据系统用户的基本信息进行建模,发现用户的相关程度,然后将相似用户喜爱的其他物品推荐给当前,比如说a用户喜欢物品4,a用户的建模特征是年龄30到40岁,性别是男,婚姻状况是已婚,收入介于5k到8k之间,然后在对 D 用户进行分析的时候,发现对用户是37岁,男,已婚,收入8k,正好和A用户建模的年龄,性别,婚姻状况,收入所匹配。于是就认定地 D 用户也会喜欢物品4,所以将物品4也推荐给 D 用户。

基于人口统计学的推荐优点是不需要当前用户对物品喜好的历史信息,对新用户没有冷启动问题,不依赖物品本身。缺点就是要收集到用户信息,比如包括一些敏感数据,年龄等等,这些一般都不愿意提及的数据信息。还有这种根据用户基本信息对用户分类的方法比较粗糙,无法适用于一些高品质领域,比如说电影好的音乐等等,还有就是用户的一些基本信息有可能会变更,比如说生活习惯一个人结婚前和结婚后它的喜欢可能就不同。


三、基于内容的推荐

物品信息建模

计算物品相似度

根据相似物品推荐

image.png

基于内容的推荐是在推进引擎出现之初应用最广泛的推荐机制,它的核心思想是根据推荐物品和内容的元数据发现物品或者内容的相关性,然后去用户以往的喜好记录推荐给用户的物品,比如说右边图,可以看出用户喜欢电影1属于爱情浪漫类型,再看其他的电影,发现电影四也是爱情浪漫型的电影,和电影的1类型是一样的,所以用户 D 也会喜欢电影4,所以说就把电影给推荐给他。

对应经内容的推荐优点是不需要其他用户的数据,只有用户自己本身的数据求就可以,没有数据的启动问题。能很好的建模用户的口味缺点是需要对物品分析,建模推荐的质量依赖于对物品模型和完整的全面程度,但物品相似度分析紧仅依赖物品本身的特征,没有考虑人对物品的态度。


四、基于用户的协同过滤

用户偏好模型

找到相近用户群

根据相似用户推荐

image.png

的最佳方法,这种算法是一个物以类聚人以群分的假设。喜欢相同物品的用户,更有可能具有相同的兴趣,基于用户的协同过滤的推荐系统,一般应用,有用户评分的系统之中,通过分数,就刻画用户对物品的喜好。

基于用户的协同过滤推荐的基本原理是根据所有用户对物品或者信息的偏好,比如说评分,发现与当前用户口味偏好相似的邻居用户,也叫相近用户群。在一般的应用中,基于K的邻居的历史偏好信息,为当前用户进行推荐,比如说上图所示,用户A和用户B的购物习惯相似,它们属于相近用户群,所以将用户A购买过的物品1推给用户 D。优点是推荐物品内容上可能完全不相关,因此可能或发现用户的潜在兴趣,并且针对每个用户生成个性化的推荐,对用户分类更为准确,能提供更准确的推荐。缺点是对新用户有冷启动问题,这种推荐是基于假设喜欢物品的用户可能有相同的口号偏好,还有用户数据一般很大,并且用户对物品的喜好会发生变化计算比较复杂,需要随时更新。


五、基于物品的协同过滤

基于物品的协同过滤和基于用户的协同过滤相比,他使用所有用户对物品或者信息的偏好,发现物品和物品之间的相似度,然后根据用户的历史偏好信息,将类似的物品推荐给用户。

image.png

比如上图中买了物品1的都买了物品3,用户 D 买了物品1,所以就把物品3也推荐给用户 D。优点是基于物品的协同过滤推荐,事实是在基于用户的机制上改良的一种策略,因为在大部分的网站中,物品的个数远远小于用户的数量,而物品的个数相度相比较用户来看,他是比较稳定的,同时基于物品的机制比基于用户的实时性更好一点。

缺点是需要以历史数据为技术抓取的建模用户的偏好后,很难进行修改或者根据用户的使用经验,从而导致这个方法不够灵活,而且不是所有的场景都适合,比如说新闻推荐系统,新闻的个数远远大于用户的个数,新闻的更新速度很快,所以说他的相似度依然不稳定。其实,除了上述推荐算外,还有别的推荐算法,比如说基于关联规则的推荐,基于效应的推荐,基于知识的推荐,组合推荐等等。

相关文章
|
9天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
40 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
18天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
2月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
1月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
59 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
75 4
|
2月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
96 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用
|
3月前
|
算法 数据库 索引
HyperLogLog算法的原理是什么
【10月更文挑战第19天】HyperLogLog算法的原理是什么
150 1