Redis命令实践

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis命令实践

Redis基本命令

第1关:字符串、列表与集合

#!/usr/bin/env python
#-*- coding:utf-8 -*-
import redis
conn = redis.Redis()
def task_empty():
    # 请在下面完成判断任务列表是否为空
    #********* Begin *********#
    return int(conn.llen("task_list")) == 0
    #********* End *********#
def get_task():
    # 请在下面完成获取一个任务
    #********* Begin *********#
    task = conn.rpop("task_list")
    conn.set("current_task", task)
    #********* End *********#
def get_unallocated_staff():
    # 请在下面完成获取一个未分配的员工
    #********* Begin *********#
    staff = conn.srandmember("unallocated_staff")
    conn.smove("unallocated_staff", "allocated_staff", staff)
    return staff
    #********* End *********#
def allocate_task(staff):
    # 请在下面完成分配任务
    #********* Begin *********#
    conn.append("current_task", ':' + str(staff))
    conn.lpush("task_queue", conn.get("current_task"))
    conn.set("current_task", "None")
    #********* End *********#


第2关:哈希与有序集合

#!/usr/bin/env python
#-*- coding:utf-8 -*-
import redis
conn = redis.Redis()
# 初始化任务信息到 Redis 中
def set_task_info(task_id):
    # 请在下面完成要求的功能
    #********* Begin *********#
    conn.hset("task_status", task_id, "init")
    #********* End *********#
# 将任务添加至任务队列
def add_task_to_queue(task_id, priority):
    # 请在下面完成要求的功能
    #********* Begin *********#
    conn.zadd("task_queue", task_id, int(priority))
    set_task_info(task_id)
    #********* End *********#
# 从任务队列中取出优先级最高的任务
def get_task():
    # 请在下面完成要求的功能
    #********* Begin *********#
    task_list_by_priority = conn.zrevrange("task_queue", 0, -1)
    current_task = task_list_by_priority[0]
    conn.zrem('task_queue', current_task)
    conn.hset("task_status", current_task, "processing")
    return current_task
    #********* End *********#


第3关:Redis基本事务与其他命令

#!/usr/bin/env python
#-*- coding:utf-8 -*-
import time
import redis
conn = redis.Redis()
# 用户端发起派车请求
def request_cab(user_id, priority):
    # 请在下面完成要求的功能
    #********* Begin *********#
    if conn.hexists('request:info:' + str(user_id), 'time'):
        return
    pipe = conn.pipeline()
    pipe.lpush('cab:queue', user_id)
    pipe.hmset('request:info:' + str(user_id), {'time': time.time(), 'priority': priority})
    pipe.expire('request:info:' + str(user_id), 10 * 60)
    pipe.execute()
    #********* End *********#
# 平台选择优先级最高的派车请求并派车
def allocate():
    # 请在下面完成要求的功能
    #********* Begin *********#
    cab_queue = conn.sort('cab:queue', by='request:info:*->priority', desc=True)
    current_respond = cab_queue[0]
    conn.lrem('cab:queue', current_respond, 1)
    return current_respond
    #********* End *********#
# 用户端取消派车请求
def cancel_cab(user_id):
    conn.expire('request:info:' + str(user_id), 0)
    conn.lrem('cab:queue', user_id)


Redis命令实践

第1关:使用Redis管理登录令牌

#!/usr/bin/env python
#-*- coding:utf-8 -*-
import time
import redis
conn = redis.Redis()
# 核对令牌,并返回该令牌对应的用户 ID
def check_token(token):
    # 请在下面完成要求的功能
    #********* Begin *********#
    return conn.hget('login', token)
    #********* End *********#
# 更新令牌,同时存储令牌的创建时间
def update_token(token, user_id):
    # 请在下面完成要求的功能
    #********* Begin *********#
    timestamp = time.time()
    pipe = conn.pipeline()
    pipe.hset('login', token, user_id)
    pipe.zadd('recent:token', token, timestamp)
    pipe.execute()
    #********* End *********#
# 清理过期令牌
def clean_tokens():
    # 请在下面完成要求的功能
    #********* Begin *********#
    one_week_ago_timestamp = time.time() - 86400
    expired_tokens = conn.zrangebyscore('recent:token', 0, one_week_ago_timestamp)
    conn.zremrangebyscore('recent:token', 0, one_week_ago_timestamp)
    conn.hdel('login', *expired_tokens)
    #********* End *********#


第2关:使用Redis实现购物车

#!/usr/bin/env python
#-*- coding:utf-8 -*-
import redis
conn = redis.Redis()
# 添加商品
def add_item(name, price):
    # 请在下面完成要求的功能
    #********* Begin *********#
    item_id = conn.incr('item_id')
    item_info_key = 'item:' + str(item_id) + ':info'
    conn.hmset(item_info_key, {"name": name, "price": price})
    conn.expire(item_info_key, 30 * 24 * 60 * 60)
    return item_id
    #********* End *********#
# 加入购物车
def add_to_cart(user_id, item, count):
    if count > 0:
        conn.hset('cart:' + user_id, item, count)
    else:
        conn.hrem('cart:' + user_id, item)
# 获取购物车详情
def get_cart_info(user_id):
    # 请在下面完成要求的功能
    #********* Begin *********#
    return conn.hgetall('cart:' + user_id)
    #********* End *********#


第3关:使用Redis做页面缓存

#!/usr/bin/env python
#-*- coding:utf-8 -*-
import redis
conn = redis.Redis()
# 使用 Redis 做页面缓存
def cache_request(request_url):
    # 请在下面完成要求的功能
    #********* Begin *********#
    page_key = 'cache:' + str(hash(request_url))
    content = conn.get(page_key)
    if not content:
        content = "content for " + request_url
        conn.setex(page_key, content, 600)
    return content
    #********* End *********#


第4关:使用Redis做数据缓存

#!/usr/bin/env python
#-*- coding:utf-8 -*-
import time
import json
import redis
conn = redis.Redis()
# 将数据加入缓存队列
def add_cache_list(data_id, delay):
    # 请在下面完成要求的功能
    #********* Begin *********#
    conn.zadd('cache:delay', data_id, delay)
    conn.zadd('cache:list', data_id, time.time())
    #********* End *********#
# 缓存数据
def cache_data():
    # 请在下面完成要求的功能
    #********* Begin *********#
    next = conn.zrange('cache:list', 0, 0, withscores=True)
    now = time.time()
    if not next or next[0][1] > now:
        time.sleep(0.1)
    data_id = next[0][0]
    delay = conn.zscore('cache:delay', data_id)
    if delay <= 0:
        conn.zrem('cache:delay', data_id)
        conn.zrem('cache:list', data_id)
        conn.delete('cache:data:' + data_id)
    else:
        data = {'id': data_id, 'data': 'fake data'}
        conn.zadd('cache:list', data_id, now + delay)
        conn.set('cache:data:' + data_id, json.dumps(data))
    #********* End *********#


相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
目录
打赏
0
0
0
0
4
分享
相关文章
|
5月前
|
深入理解Django与Redis的集成实践
深入理解Django与Redis的集成实践
151 0
Redis应用—6.热key探测设计与实践
热key问题在高并发系统中可能导致数据层和服务层的严重瓶颈,如Redis集群瘫痪和用户体验下降。为解决此问题,京东开发了JdHotkey热key探测框架,具备实时性、准确性、集群一致性和高性能等特点。该框架由etcd集群、Client端jar包、Worker端集群和Dashboard控制台组成,通过分布式计算快速识别热key并推送至应用内存,有效减轻数据层负载,提升服务性能。JdHotkey适用于多种场景,安装部署简便,支持毫秒级热key探测和集群一致性维护。
113 61
Redis应用—6.热key探测设计与实践
|
13天前
|
Redis如何优化频繁命令往返造成的性能瓶颈?
频繁的命令往返是Redis性能优化中需要重点关注的问题。通过使用Pipeline、Lua脚本、事务、合并命令、连接池以及合理设置网络超时,可以有效减少网络往返次数,优化Redis的性能。这些优化措施不仅提升了Redis的处理能力,还能确保系统在高并发情况下的稳定性和可靠性。
37 14
Redis是如何建立连接和处理命令的
本文主要讲述 Redis 是如何监听客户端发出的set、get等命令的。
1304 160
java连接redis和基础操作命令
通过以上内容,您可以掌握在Java中连接Redis以及进行基础操作的基本方法,进而在实际项目中灵活应用。
129 30
Redis哈希结构在提升数据检索速度中的实践应用
本文详细介绍了 Redis 哈希结构的特点、常见使用场景以及如何在实际应用中利用哈希结构提升数据检索速度。通过合理使用 Redis 哈希结构,可以显著提高系统的性能和响应速度。在实际开发中,结合具体业务需求,灵活运用 Redis 提供的多种数据结构,构建高效的缓存和数据存储解决方案。希望本文能帮助您更好地理解和应用 Redis 哈希结构,提升数据检索速度。
76 18
Vue.js应用结合Redis数据库:实践与优化
将Vue.js应用与Redis结合,可以实现高效的数据管理和快速响应的用户体验。通过合理的实践步骤和优化策略,可以充分发挥两者的优势,提高应用的性能和可靠性。希望本文能为您在实际开发中提供有价值的参考。
75 11
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
142 8
Redis 缓存使用的实践
《Redis缓存最佳实践指南》涵盖缓存更新策略、缓存击穿防护、大key处理和性能优化。包括Cache Aside Pattern、Write Through、分布式锁、大key拆分和批量操作等技术,帮助你在项目中高效使用Redis缓存。
838 22
MySQL与Redis协同作战:百万级数据统计优化实践
【10月更文挑战第21天】 在处理大规模数据集时,传统的单体数据库解决方案往往力不从心。MySQL和Redis的组合提供了一种高效的解决方案,通过将数据库操作与高速缓存相结合,可以显著提升数据处理的性能。本文将分享一次实际的优化案例,探讨如何利用MySQL和Redis共同实现百万级数据统计的优化。
326 9

热门文章

最新文章