精细化营销的实现技术|学习笔记

本文涉及的产品
模型训练 PAI-DLC,100CU*H 3个月
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 快速学习精细化营销的实现技术

开发者学堂课程【场景实践 - 机器学习PAI实现精细化营销精细化营销的实现技术】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/521/detail/7046


精细化营销的实现技术


内容介绍:

一、概念

二、常见技术

三、实现过程

四、大数据处理服务 MaxCompute

五、精细化营销的数据处理过程-数据挖掘

六、精细化营销数据处理技术-机器学习

七、精细化准营销算法-客户细分聚类模型

八、精细化准营销算法-K-Means


一、概念

精细化营销中客户细分主要是根据客户的属性、行为、需求、偏好以及价值等因素对客户进行分类,并提供有针对性的产品、服务和销售模式。现在是大数据时代都在根据这些海量数据进行挖掘数据处理分析,挖掘出里面的客户特征,根据客户的属性行为来找出客户,为客户进行画像,这些都是属于精细化营销的前提范畴。


二、常见技术

数据存储、处理载体即数据处理平台,常见如数据库\数据仓库\海量数据处理平台(如 MaxCompute )等;

数据加工处理技术:SQL、MR、脚本语言、机器学习、数据挖掘等;

常见的算法模型:

决策树、Logit 回归(事前处理)聚类分析、分类模型(事后处理)


三、实现过程

1.特征细分

2.价值区间细分

3.共同需求细分

4.细分聚类算法

5.评估


四、大数据处理服务 MaxCompute

大数据计算服务(MaxCompute,原 ODPS)由阿里云自主研发,提供针对 TB/PB 级数据、实时性要求不高的分布式处理能力,应用于数据分析、挖掘、商业智能等领域。

image.png

人工智能就是实验中继续学习所要用到的,因为继续学习的 PAI 是建立在 max compute 上面的。


五、精细化营销的数据处理过程-数据挖掘

数据挖掘(英语:Data mining,简称 DM)=机器学习+数据仓库,是对存储于数据仓库\数据平台中的大量数据、通过查询和抽取方式获得以前未知的有用信息、模式、规则的过程。数据挖掘是一个过程,而这个过程通过机器学习来实现。精细化营销数据处理过程就是机器学习过程、就是数据挖掘过程。

精细化营销是数据的处理过程,这个过程就是数据挖掘的过程。要从看似离散的、没有规律、没有共同特点的数据中把客户聚起来,其实就是一个数据挖掘的过程。数据过程=机器学习+数据仓库。对于存入平台的数据仓库,数据平台的大量数据通过查询抽取方式,获得以前未知的有用信息模式的过程,客户分群其实就是把这些没有共同信息、共同模式的客户找出来的过程。这个过程通过继续学习来实现。

image.png

这是一个以数据为中心的循序渐进的螺旋式的数据探索、处理过程;

这是各种分析方法、数据处理方法的集合;

这是一个海量数据的处理过程;

机器学习的目的最终目的是辅助获取知识;


六、精细化营销数据处理技术-机器学习

机器学习∶是一门多领域交叉学科。从范围上讲机器学习和数据挖掘是类似的,可以等同于数据挖掘。从广义上来说,机器学习是一种能够赋予机器学习的能力以此让它完成直接编程无法完成的功能的方法。

但从实践的意义上来说,机器学习是一种通过利用数据,训练出模型,然后使用模型预测的一种方法。实践角度上讲就是让机器去模拟人来分析数据、训练数据、处理数据,找出隐含的信息,基本上等同于数据挖掘。

image.png

精细化营销的数据模型构建可以通过阿里的机器学习平台 PAI 来实现,通常意义上讲直接采用各类算法成本高、门槛高,采用机器学习产品 PAI 简单、便捷。历史数据通过训练和计算找到模型预测未来。


七、精细化准营销算法-客户细分聚类模型

聚类分析( clustering )分析是将一组对象划分成簇(cluster),使簇内对象相似性尽量大,而簇间对象相似性尽量小。常见的五大类算法︰划分法、层次法、基于密度的方法、基于网格的方法、基于模型的方法

1.划分法

划分法( partitioning methods)∶给定一个由n个元组或记录组成的数据集,划分法将构造k个分组,分的组一定比集合的总数要小,否则就会一个分一组,就没有什么意义。每个分组代表一个聚类,k<=n。K个分组满足下列条件:(1)每个分组至少包含一个对象,(2)每个数据记录属于且仅属于一个分组。算法:k-means、k-medois、CLARANS。

2.层次法

( hierarchical methods ) :对给定的数据集进行层次分解,直到满足某种条件位置。具体可分为“自底向上”的凝聚法和”自顶向下“的分裂法两种法案。代表算法:BIRCH、CURE、CHAMFI FON。

3.密度法

( density-based methods ) :不是基于距离,而是基于密度。能克服基于距离的算只能发现“类圆形”聚类的缺点。代表算法:DBSCAN、OPTICS。

4.网格方法

( grid-based methods ) :首先将数据空间划分成有限个单元的网格结构,所有的处理都以单元为对象。优点处理速度很快。代表算法:STING、CLIQUE、Wave-Cluster。

5.模型方法

( model-based methods ) :给每个聚类假定一个模型,然后去寻找数据对给定模型进行最佳拟合。给定模型可能是数据点在空间中的密度分布函数或其他。


八、精细化准营销算法-K-Means

K-Means 即 K 均值聚类:属于划分聚类。其工作原理为根据初始化的聚类中心信息,计算每个样本到这些中心的距离,先预设一些中心点,其他周围的元素哪些距离中心点最近,可以判断每个样本均归属于某个类簇,更新聚簇中心信息,重新计算每个样本到新的聚类中心的距离,重新划分样本到新的聚类中心对应的类中,重复进行,直到满足终止条件,即各个元素到中心点的距离都不再变化。

image.png

相关实践学习
使用PAI-EAS一键部署ChatGLM及LangChain应用
本场景中主要介绍如何使用模型在线服务(PAI-EAS)部署ChatGLM的AI-Web应用以及启动WebUI进行模型推理,并通过LangChain集成自己的业务数据。
机器学习概览及常见算法
机器学习(Machine Learning, ML)是人工智能的核心,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域。 本课程将带你入门机器学习,掌握机器学习的概念和常用的算法。
相关文章
|
2天前
|
机器学习/深度学习 人工智能 搜索推荐
CMO的营销技术成功路线图
CMO的营销技术成功路线图
|
5月前
|
搜索推荐 算法 大数据
精细化营销时代,户外广告逆袭靠什么?
精细化营销时代,户外广告逆袭靠什么?
|
4月前
|
机器学习/深度学习 人工智能 搜索推荐
【图像生成技术】人工智能在广告营销的革新:图像生成技术的应用与实践代码示例
随着人工智能技术的飞速发展,广告营销行业迎来了前所未有的变革。图像生成技术,作为AI领域的一颗璀璨明星,正被广泛应用于创造个性化、高吸引力的产品展示图、海报乃至宣传视频,以精准对接目标受众,显著提升广告的转化率和整体营销效果。本文将深入探讨这一技术的应用场景,并通过一个简单的代码示例,展示如何利用深度学习框架TensorFlow来实现创意图像的自动生成。
108 4
|
6月前
|
数据可视化 搜索推荐 物联网
室内定位新突破:基于3D可视化与iBeacon技术的商场导航营销系统
**维小帮商场导航系统利用3D GIS、iBeacon定位、VR及物联网技术,提供3D导航、AR实景指引、设施查找及位置分享功能,提升顾客体验,增强商场品牌,推动经济效益增长。通过精准路径规划和沉浸式导航,用户能轻松找店,商场则塑造了智能形象,促进了交易量。**
120 1
室内定位新突破:基于3D可视化与iBeacon技术的商场导航营销系统
|
6月前
|
搜索推荐 数据挖掘 UED
数字营销技术:社交媒体与SEO的深度融合
【6月更文挑战第23天】在当今数字时代,社交媒体与SEO成为企业营销的关键。社交媒体提供互动平台,增强品牌影响力,而SEO则优化网站排名,吸引流量。两者融合,通过内容共享、链接策略、关键词优化及数据分析,提升品牌知名度,改善用户体验,共同驱动营销效果。企业需抓住这一融合趋势,以适应市场变化和客户需求。
|
6月前
|
敏捷开发 存储 前端开发
【美团技术】领域驱动设计DDD在B端营销系统的实践
【美团技术】领域驱动设计DDD在B端营销系统的实践
|
6月前
|
机器学习/深度学习 人工智能 搜索推荐
AI在市场营销技术中的崛起:转变数字营销策略
AI在市场营销技术中的崛起:转变数字营销策略
|
7月前
|
人工智能 算法 双11
「我在淘天做技术」双11背后的营销技术体系
每年的双11都会吸引亿级消费者、百万商家参与,会场、红包、优惠券,各类玩法目不暇接。作为大促的主阵地,淘天营销技术经过多年大促的历练沉淀,沉淀了丰富的业务能力,支撑了大促、营销频道等各种营销业务场景。本文将为大家介绍下营销技术体系。
|
7月前
|
人工智能 算法 前端开发
在淘宝,营销技术团队如何支持双11?
在淘宝,营销技术团队如何支持双11?
197 0
|
机器学习/深度学习 前端开发 算法
营销场景下互动技术的应用与探索
营销场景下互动技术的应用与探索
133 0