阿里云物联网数据的统计分析|学习笔记

简介: 快速学习阿里云物联网数据的统计分析。

开发者学堂课程【物联网平台实战课程:阿里云物联网数据的统计分析】学习笔记,与课程紧密联系,让用户快速学习知识。

课程地址:https://developer.aliyun.com/learning/course/836/detail/13996


阿里云物联网数据的统计分析

 

内容介绍:

一、 演示场景设计

二、 平台介绍

三、 过程演示

 

一、 演示场景设计

首先是场景的设计说明,在一些工业或者特别是大型装备场景下设备的使用率,也就是我们所说的 OEE 设备的综合使用效能,是非常关键的,这个产品工厂的生产效率以及它的这个效能都是有直接关系的。

在互联网场景下,这个指标怎么清洗出来,首先是有一个 OEE 计算公式,在网上可以搜到相关的资料。

OEE 的主要三部分组成,第一部分是时间开动率时间开动率就是这台机器的实际工作时长除以计划的工作时长,实际工作时长是这台设备从启动到结束的时间,计划时长是指今天工厂的计划排班计划停机

比如说午休时间30分钟,或者中途休息的时间,还有八小时的睡眠时间,除去之后,就是计划时间性能开动率是实际节拍乘以理想节拍,一般来说理想节拍是这个行业或者机床里面的历史数据汇聚出来的一个值是它的加工的效率,那实际节拍就是这台机器生产的工件除以这个机器实际工作时长,这样就得到性能开动率。良品率是加工合格工件除以工件数,三个指标相乘就是设备综合效能

 image.png

右边的信息是模拟出来的在工厂的班次。比如八小时的工作也就是480分钟,有半小时的午餐中断和两次的休息中断,是的计划时长是420分钟,在这个行业里面假设这个行业里面的一个理想节拍是一分钟生产60个工件。

另外还有一些维度数据,比如说本次要生产的工件有10万件,按照这个思想实验来看一下 OEE 的思想设计。这里罗列了几个相关的指标

image.png

主要是用互联网数据分析平台的这个物模型来定义相关的点或者字段,在工厂叫测点,在软件工程这边可能叫字段,一个字段叫当前的工作时间,这里是一次设备启动到停止的一个周期时间,它的单位是秒,用秒的话会更精确,可能分钟,每个地方可能不同。

第二个是当前的加工订单数,加工工件数,指一次工作一个工作周期内完成的加工工件数。第三个是当前的合格工件,一次工作时长加工出来的工件它的合格数有几个,除了这些核心的字段外还有其他的

image.png

比如说操作的停机事件,这种很常见,比如刚才说的午休时间,或者两次中断,这台机器需要停止,那么就会有一个操作停机这样的事件另外一些非计划停机的一些场景,比如说转轴更换,刀片更换,类似这样的非计划的故障,比如发动机异常之类的,需要有异常时间,还有其他的,比如液压油,润滑油,液位,压力,还有一些电器的一些温度等等。这个就是思想实验中模拟出来的彩色的一些字段这就是最终通过互联网数据分析平台配置出来的一个报表

image.png 

上面的叫双轴图,双轴图上的折线是设备综合效,这个综合效能上面已经说过了,是由三个指标组成,一个是设备开率,一个性能开率,以及一个良品率,可以看到这三个指标的趋势或者值,很明显可以观察出来当天OEE 值受哪个指标影响,比如说8月6号指标值很低,可以看到设备开动率很低,所以导致 OEE 的值很,相应的其他折线的趋势很明显看出来了。

下面就是单个指标与 OEE 之间的影响关系,可以单个来看,同时也可以用表格的方式来展示,很直观的展示 OEE 跟其他指标的关系。

下面这张图,是配置设备详细报表,

 image.png

比如上面这块,是思想实验中模拟的发动机指标。比如 CA 象限电压AB 象限电压,AC 象限电压,电温度,压力,以及润滑液位等等,当然,这个思想实验里面假定的一些值,可能在实际的一个工厂里面,它的指标会更多,这些指标都可以一个个往上配。

下面是通过模拟出来的值统计出的计划停机的磁场的曲线,以及故障停机的曲线。

看到这个曲线之后,可以根据下面的一个详情展示这个曲线的具体的值主要分布在什么地方,比如说刀片断裂维修,从什么时间到什么时间,总共花了7200秒,等等,这都是模拟的一些事件。

 

二、 平台介绍

这张图最左边设备,平台的第一层是连接,连接就是消息流转设备的管理,以及运维模块,就是昨天介绍的监控诊断。今天介绍的最右侧这一部分叫数据分析平台,模块主要分为设备备份,指标管理,后备的资产管理,持续数据分析,实际数据分析这块还在建设中。

image.png

以及数据 API最右边就是企业的系统物联网的本质是把设备数字化,数字化是接入,接入之后这个设备属性或者事件上报之后,有两个地方去使用,第一个是通过的规则引擎流转到企业的系统,进行 tp 业务系统的开发。

另一个流转之后,也可以存进数仓进行大数据的分析

下面介绍物联网数据分析平台的概述第一个点存储是依托阿里云的飞天的系统主要是用的一个分布式的一个存储系统,叫盘古,保证了数据存储的安全性,数据丢失率极低,另外它的价格很低。整个价格是存储计算分离的,这个盘古的存储是分布式的存储,另外还支持多模的一个计算引擎,底下平台基层 max computer 的一个批量计算引擎,同时,对于一些常见的一些指标,是用 flink 来做一个实时数据的清洗,这一部分主要是通过基础 API 的方式提供给用户使用,这样使用是考虑到这个流计算的成本太高了,所以用一方的方式来做清洗当未来随着平台的存储这块也可以逐渐去开放。

 image.png

以下还有一个是交互查询,是依托于这个 hologres,是一个很强大的一个交互式查询引擎,同时也具备机器学习的模块在数据应用方面主要是两方面,一是可视化的能力,同时,还有数据 API 的提供

左边的是数据源,数据源可分成这个物模型的数据和制定的数据,这都是设备数据,同时,业务数据也正在开发中,八月三十号将上线支持业务数据的基层。

第二部分也正在开发就是数据管道,然后进入到数据分析和机器学习两个数据处理的模块,处理完之后,这个数据是以数据资产信息组织起来,提供给数据报表和数据 API 去使用

数据部分是直接可以点击一个备份,可以备份整个互联网企业的数据,这边备份的话默认只备份标准模型的数据,同时,还提供一个解析管道、解析任务来支持用户去自定义解析他的一些事件,因为事件是嵌套的,所以他无法跟表对齐,需要有一个解析,同时也支持用户自定义的一些 topic 的一个数据的一个解析。

备份可以支持整个实的数据备,也可以支持单个产品的数据进行备份

数据管道是一个很典型的,或者是非常经典的编排方式来处理,目前提供了一个数据源源定义源定义可以选择实例、产品、设备,设备只能是针对全部设备,另外可以选择 topic 类型,支持事件和自定义的 topic 表达式这块和过滤器,是可以通过一个表达式来进行一个数据的转换,比如说四则运算,或者常用的一些函数进行数据处理。

另外,也支持数据的过滤,因为互联网的数据,有很多时候是不标准的,需要进行提前的过滤,达到比较好质量的数据,进行后续的加工和处理。

目标是可以回到具体的一个产品上去下一个步骤是一个指标定义,指标定义其实可以对标到阿里model的这样一个指标设计的过程,它包括一个数据也就是所谓的指标域,也有个业务过程。这节可以对应到原指标,也就是原子指标,原指标进行延伸是要增加一个统计周期和一个修饰词。

修饰词包括直接修饰词和业务修饰词。这个组合之后是派生指标,这是很典型的指标定义过程,是用系统的方式,最佳实践出来提供给用户使用才所定义的概念在词库管理里面会有一个原子词的定义,原子词包括展示名字和度量,数据类型和业务口径,这里内置了很多时间修饰词,当然也开放一个工单方式来增加相关的时间修饰词

在指标管理这部分是罗列出来相应的指标,刚举的例子,已经提前把这些指标都已经给处理过了,比如故障周期,它是一个原始的指标,同时,最近一天的设备全局的一个项目也就是 TPP 以上属于野生指标,右侧是任命为指标是七加一调度的,每天调度的时候,会生成一个周期例,并且相关的调度的过程,可以通过日志来查看,同时如果有异常,或者逻辑发生改变之后,可以进行重跑,并且也支持回刷实例,回刷实例是选择具体的一个指标,以及它的回刷的一个期,可以进行手动的数据的回刷

下面的指标生产完之后,有两个出口,第一个是数据洞察,也就是的报表系统。

这个截图是报表

image.png

报表包括指标卡嘱咐指标卡折线图柱状图双轴图条形图、散点仪表台和表格,当然对于一些很专业的 BI 系统的话这个可能还不是很全,但是这是相当于把物联网数据的集成清洗,加工,以及的展示,进行一个完整的闭环

如果有更高要求,可以通过数据 API 进行数据的拉取,在自己的大平台,或者报表进行定制化的展示数据 API 也分成两排

image.png

第一排是基础服务 API,这些会把一些通用的设备的指标进行清洗,并且以一方的指标提供在这个基础服务 API 里面露出目前有二三组预测的指标 API,可以看到任意一天的联网方式的分布,历史至今的设备品类分布,任意一天的设备品类分布排行等等,都是针对物联网数据分析沉淀下来的指标,这样免用户一个数据清洗或开发的一个过程。

在制定数据 API 里面可以根据用户的要求,可以自己去定 API 的形式,这里主要介绍这个能力主要包括 API 的一个测试,当然开放之前肯定要测试一下,可以直接在工作台进行测试,测试的时候有一个日志的返回,返回的数据结构的展示,同时调用的事例,也是代码,这边展示的 Java 的代码调用的一个示例代码,用户可以直接把这个相关代码拷出去,可以调用这个 api 了。

另外,是相关的入差和出差的说明,最基础的信息会在最部来展示。另外是对于新的产品提供原始数据的接口,这样用户可以把上报的数据通过批量分页的方式来拉取,这是刚才介绍的具体的一个制定API 的过程。定义完之后,可以相关SDK 的方式来调用。

上面是整个系统的简单的介绍

 

三、 过程演示

下面会着重去介绍一下整个流程

image.png

第一个前置条件是要购买企业的数据型实力,或者在基础的实例上面去做分配,另外,是要创建相关的产品和设备,同时要把设备接上来上报数据第二是数据上之后,需要一个集成过程,这个集成过程,是因为物联网平台跟数据分析平台都是在一个平台内部的,所以它数据集成已经做好了初始化,只需要做一个点击备份这样的按钮,可以完成数据集成的工作。再往下的话就是指标规范的介绍,比如原子词的定义,时间修饰词,以及主题域的一些信息,这个指标规范是为了规范大家做指标开发的时候有一个统一的口径,因为缺少统一口径之后你和别人开发的指标没法进行信息的交换,时间久了相应的指标就没人看得懂了。

指标介绍完之后会进入资产开发的过程,就是野生指标的定义,以及周期实例和回刷实例的展示,完成之后就是数据报表和 api 的数据消费的展示。

首先是要购买的这个数据实例,首先是选择数据型,之后可以选择对应的处理单元,这里处理单元只算一个 cpu 和4G 内存,存储空间可以根据设备量以及设备上报频率进行选择,点击购买就可以进行数据实例的购买,点击进去之后会有一个半软件,这是通用的,相关的数据型的指标是处理单元

还有一个前置条件,现在已经初始化好了一个叫工业演示的一个产品,并且相应的模型经进行一个定义相应的设备也进行创建,设备的一个上报是用了平台设备模拟器进行模拟连接和上报数据相关的属性和事件,通过这个方式来上报。

完成这一块之后,数据分析平台,刚才说了备份,数据备份,主要进行一个备份,选择一个周期,最多可以支持100年的数据备份,理论上只要阿里云公司还在数据是一定会存在的备份完之后,相对数据已经集成完成,备份过程中,会有 loading 页,也就是默认回刷前一个月的一个数据到这个平台中,方便用户进行数据的操作。

增量部分数据会源源不断,只要设备在上报,那么数据就会持续集成到平台上来。数据管理的含义是可以根据每个产品来进行一个停止和备份。

然后进入数据资产,只要做了备份,相应的属性,比这个液压压力,当前工作时间电机温度,这些值是在模型属性里面定义的,会导入到这里的原始定义里面,作为原始定义的存在,在原始定义或原始指标的基础上,可以进行指标的加工,就是野生指标,刚才说的 OEE  就在这里。

下面介绍一下具体的指标的定义。定义之前介绍一下几个概念,我们会根据不同的域,这里域分为产品设备,分组空间,活动这几个域,几个域按照这里视角展示,可以在产品上进行指标的定义,是相当于把整个产品的数据进行聚合,举个例子比如温度,耗电量,统计这产品系列的一个设备的耗电量,这个指标应该在产品的视角进行创建,这个指标是把这个产品下所有设备的耗电量进行计算设备视角的话对某一个设备的耗电量统计,只处理单个设备的数据,分组的概念是选一批设备,可能不是按产品的力度,可按照一个项目的力度或者一幢楼的力度,当然一幢楼还有空间的视角,这些都是相当于设备的一个缺陷,设备缺陷之后可以把相应指标清洗完之后,通过这些视角来展示。

这里模拟的一些工业的场景类似模板加工设备,是比较大的一个设备,它可能关注的是这个设备本身的一些指标。点击进去之后,相应的一个原始设备会在这里罗列,

image.png

可以查看相关的比如电机温度,按照折线图的方式,电机温度的上报是按照曲线直接绘制出来的,可以看到一些野生指标。可以看到四号五号六号七号八号一直到11号上报数据,每天的生产出来的唯一的一个指标,它的曲线很明显的可以看出来这个设备的一个效率的变化。

image.png

原子词的话很简单,是根据平均温度,平局温度就是一个原始     指标,标识符是名称,度量单位就是℃,数值类型就是 double 型,口径可以随便写,具体的指标怎么加工呢,如果要在某一个域面或者某一个视角进行指标的加工比如产品设备,分组,可以选择相应的标签,比如选设备,要选择哪个产品哪个设备,本实体是在这个设备进行指标的加工,选择的时间修饰词,比最近七天,要统计近七天的良品率。

良品率就是合格工件数除以当前的加工订单,这样的值是良品率,点击完成,这样这个指标定义完成了。有两条路径,第一条可以直接去刷这个指标,这个指标开始执行如果有问题可以找到具体的某一天任务,去看成功,点击可以看到这个执行的日志以及状态,以及提交时间和完成的时间指标的延伸很简单,但目前平台只支持设备数据的延伸,以后逐步引进,业务数据也能进行一个汇聚指标加工,同时能提供更多的加工的手段,因为这个指标的加工,是一个逐渐的方式未来在生活方面进行提供指标加工完之后可以到的一个数据洞察去做相应的报表

刚才加工的指标直接在这个数据洞察的数据集里面自动的投递过来。

刚刚说的001这个设备如果是在产品上进行指标的定义,那么就会到产品,设备上面定义的指标就会到设备这一栏分组空间活动,包括物理表,这边有一个大致的看板,可以把历史数据给展现出来,这些数据都是模拟的,可能跟真实的不太一样所有的原始指标,上面这表头,这是具体的一个值。

还有一个是的如果是调度的指标,会在这个指标类型日这一栏选择之后可以看到了,可以看到具体的衍生指标,比如最近一天的加工时间的汇总,最近一天加工工件的汇总,最近一天的设备开动率的指标日的平均节拍的指标,性能率的指标,最近一天的良品率的指标,以及的 O11的指标,以及设备全局效率的指标这样可以协助这个设备,工厂来做这个效能的趋势的判断。这边是一个看板怎么样把这些数据展示出来呢?

image.png

可以创建一个工作簿,工作簿是报表的工作台,第一步选择一个人图表,第二步是拉个数据,第三步条件,第四是公开这个链接被对方的公网去访问,比如自己的业务系统继承。

下面展示一个折线图,折线图要把相应的一个数据集给拉取进来,就是这里的产品和设备,点击之后相应的指标就在这里罗列出来了,配一个日聚合的生指标,X轴是日o11指标放在 y 轴。

image.png

 image.png

这个 oee 的折线图可以很明显的跟这个指标进行对比,比如 OEE 跟性能开动率,设备开动率,以及的良品率之间的关系可以很直观的看出来,当然也可以表格的方式来详细的展示,公开之后这个链接就可以分享到外网去使用了,另外,相关的详情可以在这里去配置

image.png

比如说发动机的一些指标,可以直接通过指标卡的方式配置出来,相应的事件可以用表格的方式来展示。

这边是报表这部分,但只是很粗略的去展示,其实还有很多的能力,比如说排序,重命名,还有对数字类型可以进行格式的调整,也可以进行聚合的方式,有最小值最大值平均值,这样整个分析可以用报表分析的方式可视化进行分析。

另外一部分是数据服务,刚才讲了这个数据服务,分成基础服务和自定义服务基础服务是由已经清晰好的一方类指标,这里拿一个历史地区历史至今的地区的设备统计,按照区域来统计,指标有多少。比如说地区创建设备的占比,地区的激活设备数,地区的战线设备数,以及地区战线这个占比等等,去做一个具体展示,首先第一个参数可以看到是实例 ID,把实例 ID 填进去。

第二是实体,看到这个例子产品以及要展示的一个地方,时间的话就选一个20208月10号吧,8月10号刚才介绍指标的直接罗列出来。如果说要在的业务系统去调的话可以直接通过这个实例代码SDK 的方式去获取这个数据

制定 API,可以根据的制定指标配置一个数据 API,这里已经配了一个。

 image.png

相应的一个 O1的指标可以直接拉取出来了

首先 API 名字,可以按照自己的需求来填写。地址是必填的是为了防止把 API 定义成重样的就不好找了,标签可以自己打一个,描述随便填,这个指标是在设备下进行创建的,那就选择这个产品和的这个设备完,之后可以去做一个概览概览在数据洞察里面可以看到具体的指标,这是一个野生指标。

然后按照自己的一个需求来配置好业务时间,第二个把全局中的效能访问出来,操作符可以用 Between hand ,也可以取具体的某一天。

可以选择您要排序的一个段,比如按照业务时间排序是序,升序是从小到大结束之后可以做一下保存,同时可以做个测试,点击之后相应的指标就出来了,配置完之后就可以进行发布,发布的话可以拿 API path 使用 SDK 去调用了。

相关实践学习
钉钉群中如何接收IoT温控器数据告警通知
本实验主要介绍如何将温控器设备以MQTT协议接入IoT物联网平台,通过云产品流转到函数计算FC,调用钉钉群机器人API,实时推送温湿度消息到钉钉群。
阿里云AIoT物联网开发实战
本课程将由物联网专家带你熟悉阿里云AIoT物联网领域全套云产品,7天轻松搭建基于Arduino的端到端物联网场景应用。 开始学习前,请先开通下方两个云产品,让学习更流畅: IoT物联网平台:https://iot.console.aliyun.com/ LinkWAN物联网络管理平台:https://linkwan.console.aliyun.com/service-open
相关文章
|
4月前
|
物联网 数据管理 Apache
拥抱IoT浪潮,Apache IoTDB如何成为你的智能数据守护者?解锁物联网新纪元的数据管理秘籍!
【8月更文挑战第22天】随着物联网技术的发展,数据量激增对数据库提出新挑战。Apache IoTDB凭借其面向时间序列数据的设计,在IoT领域脱颖而出。相较于传统数据库,IoTDB采用树形数据模型高效管理实时数据,具备轻量级结构与高并发能力,并集成Hadoop/Spark支持复杂分析。在智能城市等场景下,IoTDB能处理如交通流量等数据,为决策提供支持。IoTDB还提供InfluxDB协议适配器简化迁移过程,并支持细致的权限管理确保数据安全。综上所述,IoTDB在IoT数据管理中展现出巨大潜力与竞争力。
121 1
|
1月前
|
传感器 安全 算法
物联网发布者在数据传输过程中如何防止数据被篡改
在物联网数据传输中,为防止数据被篡改,可采用加密技术、数字签名、数据完整性校验等方法,确保数据的完整性和安全性。
|
1月前
|
存储 安全 算法
物联网发布者在发送数据时如何保证数据的安全性和完整性
数据加密、密钥管理和数据完整性验证是物联网安全的重要组成部分。对称加密(如AES)和非对称加密(如RSA)分别适用于大量数据和高安全需求的场景。密钥需安全存储并定期更新。数据完整性通过MAC(如HMAC-SHA256)和数字签名(如RSA签名)验证。通信协议如MQTT over TLS/SSL和CoAP over DTLS增强传输安全,确保数据在传输过程中的机密性和完整性。
|
2月前
|
存储 边缘计算 物联网
阿里云物联网平台:推动万物互联的智能化解决方案
随着物联网技术的快速发展,阿里云物联网平台为企业提供了一体化的解决方案,包括设备接入、数据管理和智能应用等核心功能。平台支持海量设备接入、实时数据采集与存储、边缘计算,并具备大规模设备管理、高安全性和开放生态等优势。广泛应用于智能制造、智慧城市和智能家居等领域,助力企业实现数字化转型。
253 5
|
4月前
|
存储 传感器 监控
理解并利用物联网(IoT)数据的技术探索
【8月更文挑战第11天】物联网数据是数字化转型的重要资源。通过深入理解物联网数据的特性和价值,并采取有效的收集、处理和分析策略,我们可以更好地利用这些数据为企业决策提供支持、优化运营效率、创造新的商业模式并推动数字化转型的深入发展。
|
5月前
|
存储 运维 监控
阿里云物联网平台的优势
【7月更文挑战第19天】阿里云物联网平台的优势
89 1
|
5月前
|
物联网
好的资源链接,gitee全糖咖啡,B站视频转成mp4,全糖咖啡 / 物联网网关数据上传,,全糖咖啡 / springboot+百度智能车牌检测
好的资源链接,gitee全糖咖啡,B站视频转成mp4,全糖咖啡 / 物联网网关数据上传,,全糖咖啡 / springboot+百度智能车牌检测
|
6月前
|
机器学习/深度学习 传感器 算法
物联网(IoT)数据与机器学习的结合
【6月更文挑战第6天】物联网和机器学习加速融合,驱动数据收集与智能分析。通过机器学习算法处理 IoT 数据,实现智能家居、工业生产的智能化。示例代码展示如何用线性回归预测温度。结合带来的优势包括实时监测、预警、资源优化,但也面临数据质量、隐私安全、算法选择等挑战。未来需强化技术创新,应对挑战,推动社会智能化发展。
196 0
|
1月前
|
存储 安全 物联网
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
政府在推动物联网技术标准和规范的统一方面可以发挥哪些作用?
101 50
|
1月前
|
安全 物联网 物联网安全
制定统一的物联网技术标准和规范的难点有哪些?
制定统一的物联网技术标准和规范的难点有哪些?
51 2

热门文章

最新文章

相关产品

  • 物联网平台