【C++】类和对象 (中篇)(2)

简介: 【C++】类和对象 (中篇)(2)

5、C++11 补丁 – 缺省值

经过上面的学习我们发现,自动生成的默认构造函数对内置类型不处理,对自定义类型要处理的特性使得构造函数变得很复杂,因为一般的类都有需要初始化的内置类型成员变量,这就使得编译器默认生成的构造函数看起来没什么作用;

C++11 中针对内置类型成员不初始化的缺陷,又打了补丁,即:内置类型成员变量在类中声明时可以给缺省值;缺省值的意思就是如果构造函数没有对该变量进行初始化,那么该变量就会使用缺省值:

2020062310470442.png

C++11 中的缺省值功能十分强大,它甚至可以缺省一块动态内存:

2020062310470442.png

注意:这里对成员变量给定缺省值并不是对其初始化,因为类中的成员变量只是声明,只有当实例化对象之后它才具有物理空间,才能存放数据;而缺省一块动态内存也不难理解,相当于我设计了一份房屋的图纸,我知道某个房间具体要多大,所以我可以在图纸上可以进行标注,当实际建造房屋的时候根据标注给定大小即可;

三、析构函数

1、基础知识

析构函数:和构造函数相反,析构函数完成对象中资源的清理工作,并且在对象销毁时由编译器自动调用;(注:如同构造函数不是创建一个对象一样,析构函数也不是销毁一个对象,对象的销毁工作由编译器完成)

需要注意的是,当变量的生命周期结束时变量被销毁,所以位于函数中的局部对象在函数调用完成时销毁,位于全局的对象在main函数调用完成时销毁;另外,后定义的对象会被先销毁

析构函数的特性如下:

析构函数名是在类名前加上字符 ~ (表示与构造函数功能相反);;

无参数无返回值;

一个类只能有一个析构函数,若未显式定义,系统会自动生成默认的析构函数;(注意:析构函数不能重载)

对象生命周期结束时,C++编译系统系统自动调用析构函数;

析构函数对内置类型不处理,对自定义类型调用它自身的析构函数;

2020062310470442.png

2、特性分析 – 选择处理

我们还是以 Date、Stack、MyQueue 这三个类来演示:

Date:

class Date
{
public:
  Date(int year = 1970, int month = 1, int day = 1)
  {
    _year = year;
    _month = month;
    _day = day;
  }
private:
  int _year;
  int _month;
  int _day;
};

Date 类没有进行资源的申请 (malloc 内存、fopen 文件等操作),所以我们可以不用显式定义析构函数,直接使用编译器自动生成的构造函数即可;(虽然自动生成的构造函数对内置类型不处理,但本来Date类就不需要我们做任何处理)

Stack:

class Stack
{
public:
  Stack(int capacity = 4)
  {
    _a = (int*)malloc(sizeof(int) * capacity);
    if (_a == nullptr)
    {
      perror("malloc fail\n");
      exit(-1);
    }
    _top = 0;
    _capacity = capacity;
    cout << "Stack 构造" << endl;
  }
  ~Stack()
  {
    free(_a);
    _a = NULL;
    _top = _capacity = 0;
  }
  void Push(int x)
  {
    _a[_top++] = x;
  }
private:
  int* _a;
  int _top;
  int _capacity;
};

而 Stack 类中的成员变量_a指向了一块动态开辟的空间,如果我们使用自动生成的析构函数,那么析构函数对内置类型 int* _a 不进行处理,就会造成内存泄露;所以我们需要显式定义析构函数;

MyQueue:

class MyQueue
{
public:
  void Push(int x)
  {
    _pushST.Push(x);
  }
  Stack _pushST;
  Stack _popST;
};

MyQueue 的两个成员变量 pushST 与 popST 都是自定义类型,所以编译器会调用它们的析构函数,即 ~Stack,所以MyQueue动态开辟的空间也会得到释放,不需要我们手动定义析构函数,使用系统默认生成的即可。

总结

如果类中没有申请资源时,析构函数可以不写,直接使用编译器生成的默认析构函数,比如 Date 类;有资源申请时要写,否则会造成资源泄漏,比如Stack类;但这只是一般情况,不是绝对的,最终还是要看需求 (比如 MyQueue 中我们的成员变量申请了资源,但是也不需要我们手动定义析构函数) 。

四、拷贝构造

1、基础知识

在现实生活中,可能存在一个与你一样的自己,我们称其为双胞胎:

2020062310470442.png

那在创建对象时,可否创建一个与已存在对象一模一样的新对象呢?答案是可以的。C++设计了拷贝构造来实现这个功能。

拷贝构造函数:只有单个形参,该形参是对本类类型对象的引用 (一般常用const修饰),在用已存在的类类型对象创建新对象时由编译器自动调用

拷贝构造也是特殊的成员函数,其特征如下:


    拷贝构造函数是构造函数的一个重载形式,当我们使用拷贝构造实例化对象时,编译器不再调用构造函数;

拷贝构造函数的参数只有一个且必须是类类型对象的引用,使用传值方式编译器直接报错,因为会引发无穷递归调用;

若未显式定义,编译器会生成默认的拷贝构造函数;

默认的拷贝构造函数对内置类型以字节为单位直接进行拷贝 – 浅拷贝,对自定义类型调用其自身的拷贝构造函数;

Date 类的拷贝构造:

class Date
{
public:
  Date(int year = 1970, int month = 1, int day = 1)
  {
    _year = year;
    _month = month;
    _day = day;
  }
  Date(const Date& d)  //拷贝构造
  {
    _year = d._year;
    _month = d._month;
    _day = d._day;
  }
private:
  int _year;
  int _month;
  int _day;
};

2020062310470442.png

2、特性分析 – 引用作参数

拷贝构造的第二点特性如下:拷贝构造函数的参数只有一个且必须是类类型对象的引用,使用传值方式编译器直接报错,因为会引发无穷递归调用

2020062310470442.png

原因如下:当我们使用d1来拷贝构造创建d2对象时,编译器会自动调用拷贝构造函数,但是我们知道,传值传递时形参是实参的一份临时拷贝;也就是说,拷贝构造函数在执行其函数体中的指令之前,其形参d需要先拷贝一份d1,而d拷贝d1又需要调用拷贝构造函数,如此下去就会引发无穷递归;

2020062310470442.png

但是如果拷贝构造函数的参数是引用的话,形参作为实参的别名,不需要拷贝实参,从而使得函数功能顺利实现;

另外,拷贝构造函数的参数通常使用 const 修饰,这是为了避免在函数内部拷贝出错,类似下面这样:

2020062310470442.png

3、特性分析 – 深浅拷贝

默认拷贝构造的拷贝规则如下:默认的拷贝构造函数对内置类型以字节为单位直接进行拷贝 – 浅拷贝,对自定义类型调用其自身的拷贝构造函数

对于深浅拷贝,我们以栈为例:

class Stack
{
public:
  Stack(int capacity = 4)
  {
    _a = (int*)malloc(sizeof(int) * capacity);
    if (_a == nullptr)
    {
      perror("malloc fail\n");
      exit(-1);
    }
    _top = 0;
    _capacity = capacity;
    cout << "Stack 构造" << endl;
  }
  ~Stack()
  {
    free(_a);
    _a = NULL;
    _top = _capacity = 0;
  }
  void Push(int x)
  {
    _a[_top++] = x;
  }
private:
  int* _a;
  int _top;
  int _capacity;
};

可以看到,我们并没有显式定义 Stack 的拷贝构造函数,那么编译器会自动生成一个拷贝构造,并且会将 Stack 的成员变量 _a、_top、_capacity 按字节拷贝到d2对象中;

2020062310470442.png

我们继续往下调试,发现程序异常:

2020062310470442.png

对C语言动态内存管理较为敏感的同学可能已经发现了问题:编译器按字节将d1中的内容拷贝到d2中,但成员变量_a指向的是一块动态内存,即_a中存放的是动态空间的起始地址,那么将d1的_a拷贝给d2的_a后,二者指向同一块空间,而main调用完毕时会销毁d1和d2对象,此时编译器会自动调用 Stack 的析构函数,这就造成 _a 指向的同一块空间被析构了两次,从而引发异常;同时,这也造成了我们在 d2中插入3时也改变了d1中的数据;

2020062310470442.png

那么正确的拷贝方式应该是:为d2的_a单独开辟一块空间,并将d1中_a指向空间的内容拷贝到该空间中,其余内置成员变量再按字节拷贝:

class Stack
{
public:
  Stack(int capacity = 4)
  {
    _a = (int*)malloc(sizeof(int) * capacity);
    if (_a == nullptr)
    {
      perror("malloc fail\n");
      exit(-1);
    }
    _top = 0;
    _capacity = capacity;
    cout << "Stack 构造" << endl;
  }
  ~Stack()
  {
    free(_a);
    _a = NULL;
    _top = _capacity = 0;
  }
  Stack(const Stack& st)  //拷贝构造
  {
    _a = (int*)malloc(sizeof(int) * st._capacity);
    if (_a == nullptr)
    {
      perror("malloc fail\n");
      exit(-1);
    }
    memcpy(_a, st._a, sizeof(int) * st._capacity);
    _top = st._top;
    _capacity = st._capacity;
  }
  void Push(int x)
  {
    _a[_top++] = x;
  }
private:
  int* _a;
  int _top;
  int _capacity;
};
int main()
{
  Stack st1;
  st1.Push(1);
  st1.Push(2);
  Stack st2(st1);
  st2.Push(3);
  return 0;
}

2020062310470442.png

2020062310470442.png

在了解了 Stack 的拷贝构造之后,我们再来看 Date 类和 MyQueue 类的拷贝构造;

对于 Date 类来说,其成员变量全是内置类型,且没有资源申请,所以我们可以直接使用编译器默认生成的拷贝构造,直接按字节拷贝:

2020062310470442.png

对于 MyQueue 类来说,它的成员变量全部是自定义类型,所以默认成员函数回去调用其自身的拷贝构造,即 Stack 的拷贝构造,而 Stack 的拷贝构造虽然需要深拷贝,但我们已经显式定义,所以也不需要我们提供拷贝构造:

2020062310470442.png

总结

如果类中没有资源申请,则不需要手动实现拷贝构造,直接使用编译器自动生成的即可;如果类中有资源申请,就需要自己定义拷贝构造函数,否则就可能出现浅拷贝以及同一块空间被析构多次的情况;

其实,拷贝构造和函数析构函数在资源管理方面有很大的相似性,可以理解为需要写析构函数就需要写拷贝构造,不需要写析构函数就不需要写拷贝构造;

拷贝构造的经典使用场景:

  • 使用已存在对象创建新对象;
  • 函数参数类型为类类型对象;
  • 函数返回值类型为类类型对象;



相关文章
|
22天前
|
编译器 C++ 开发者
【C++篇】深度解析类与对象(下)
在上一篇博客中,我们学习了C++的基础类与对象概念,包括类的定义、对象的使用和构造函数的作用。在这一篇,我们将深入探讨C++类的一些重要特性,如构造函数的高级用法、类型转换、static成员、友元、内部类、匿名对象,以及对象拷贝优化等。这些内容可以帮助你更好地理解和应用面向对象编程的核心理念,提升代码的健壮性、灵活性和可维护性。
|
4天前
|
安全 C++
【c++】继承(继承的定义格式、赋值兼容转换、多继承、派生类默认成员函数规则、继承与友元、继承与静态成员)
本文深入探讨了C++中的继承机制,作为面向对象编程(OOP)的核心特性之一。继承通过允许派生类扩展基类的属性和方法,极大促进了代码复用,增强了代码的可维护性和可扩展性。文章详细介绍了继承的基本概念、定义格式、继承方式(public、protected、private)、赋值兼容转换、作用域问题、默认成员函数规则、继承与友元、静态成员、多继承及菱形继承问题,并对比了继承与组合的优缺点。最后总结指出,虽然继承提高了代码灵活性和复用率,但也带来了耦合度高的问题,建议在“has-a”和“is-a”关系同时存在时优先使用组合。
30 6
|
24天前
|
编译器 C语言 C++
类和对象的简述(c++篇)
类和对象的简述(c++篇)
|
22天前
|
安全 编译器 C语言
【C++篇】深度解析类与对象(中)
在上一篇博客中,我们学习了C++类与对象的基础内容。这一次,我们将深入探讨C++类的关键特性,包括构造函数、析构函数、拷贝构造函数、赋值运算符重载、以及取地址运算符的重载。这些内容是理解面向对象编程的关键,也帮助我们更好地掌握C++内存管理的细节和编码的高级技巧。
|
22天前
|
存储 程序员 C语言
【C++篇】深度解析类与对象(上)
在C++中,类和对象是面向对象编程的基础组成部分。通过类,程序员可以对现实世界的实体进行模拟和抽象。类的基本概念包括成员变量、成员函数、访问控制等。本篇博客将介绍C++类与对象的基础知识,为后续学习打下良好的基础。
|
2月前
|
C++ 芯片
【C++面向对象——类与对象】Computer类(头歌实践教学平台习题)【合集】
声明一个简单的Computer类,含有数据成员芯片(cpu)、内存(ram)、光驱(cdrom)等等,以及两个公有成员函数run、stop。只能在类的内部访问。这是一种数据隐藏的机制,用于保护类的数据不被外部随意修改。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。成员可以在派生类(继承该类的子类)中访问。成员,在类的外部不能直接访问。可以在类的外部直接访问。为了完成本关任务,你需要掌握。
81 19
|
2月前
|
存储 编译器 数据安全/隐私保护
【C++面向对象——类与对象】CPU类(头歌实践教学平台习题)【合集】
声明一个CPU类,包含等级(rank)、频率(frequency)、电压(voltage)等属性,以及两个公有成员函数run、stop。根据提示,在右侧编辑器补充代码,平台会对你编写的代码进行测试。​ 相关知识 类的声明和使用。 类的声明和对象的声明。 构造函数和析构函数的执行。 一、类的声明和使用 1.类的声明基础 在C++中,类是创建对象的蓝图。类的声明定义了类的成员,包括数据成员(变量)和成员函数(方法)。一个简单的类声明示例如下: classMyClass{ public: int
69 13
|
2月前
|
编译器 数据安全/隐私保护 C++
【C++面向对象——继承与派生】派生类的应用(头歌实践教学平台习题)【合集】
本实验旨在学习类的继承关系、不同继承方式下的访问控制及利用虚基类解决二义性问题。主要内容包括: 1. **类的继承关系基础概念**:介绍继承的定义及声明派生类的语法。 2. **不同继承方式下对基类成员的访问控制**:详细说明`public`、`private`和`protected`继承方式对基类成员的访问权限影响。 3. **利用虚基类解决二义性问题**:解释多继承中可能出现的二义性及其解决方案——虚基类。 实验任务要求从`people`类派生出`student`、`teacher`、`graduate`和`TA`类,添加特定属性并测试这些类的功能。最终通过创建教师和助教实例,验证代码
63 5
|
2月前
|
存储 算法 搜索推荐
【C++面向对象——群体类和群体数据的组织】实现含排序功能的数组类(头歌实践教学平台习题)【合集】
1. **相关排序和查找算法的原理**:介绍直接插入排序、直接选择排序、冒泡排序和顺序查找的基本原理及其实现代码。 2. **C++ 类与成员函数的定义**:讲解如何定义`Array`类,包括类的声明和实现,以及成员函数的定义与调用。 3. **数组作为类的成员变量的处理**:探讨内存管理和正确访问数组元素的方法,确保在类中正确使用动态分配的数组。 4. **函数参数传递与返回值处理**:解释排序和查找函数的参数传递方式及返回值处理,确保函数功能正确实现。 通过掌握这些知识,可以顺利地将排序和查找算法封装到`Array`类中,并进行测试验证。编程要求是在右侧编辑器补充代码以实现三种排序算法
48 5
|
2月前
|
Serverless 编译器 C++
【C++面向对象——类的多态性与虚函数】计算图像面积(头歌实践教学平台习题)【合集】
本任务要求设计一个矩形类、圆形类和图形基类,计算并输出相应图形面积。相关知识点包括纯虚函数和抽象类的使用。 **目录:** - 任务描述 - 相关知识 - 纯虚函数 - 特点 - 使用场景 - 作用 - 注意事项 - 相关概念对比 - 抽象类的使用 - 定义与概念 - 使用场景 - 编程要求 - 测试说明 - 通关代码 - 测试结果 **任务概述:** 1. **图形基类(Shape)**:包含纯虚函数 `void PrintArea()`。 2. **矩形类(Rectangle)**:继承 Shape 类,重写 `Print
58 4