超精准!AI 结合邮件内容与附件的意图理解与分类!⛵

本文涉及的产品
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
简介: 借助AI进行邮件正文与附件内容的识别,可以极大提高工作效率。本文讲解如何设计一个AI系统,完成邮件内容意图检测:架构初揽、邮件正文&附件的理解与处理、搭建多数据源混合网络、训练&评估。
48efec34d5ec90328b64f4f2967ad541.png
💡 作者: 韩信子@ ShowMeAI
📘 深度学习实战系列https://www.showmeai.tech/tutorials/42
📘 TensorFlow 实战系列https://www.showmeai.tech/tutorials/43
📘 本文地址https://www.showmeai.tech/article-detail/332
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏 ShowMeAI查看更多精彩内容
0ba9f4554b77b1b28c2e1356eda393cb.png

对于很多企业而言,电子邮件仍然是主要沟通渠道之一,很多正式的内容也要基于邮件传达,供应商、合作伙伴和公共管理部门也每天会有大量的电子邮件。邮件的信息提取和处理可能是一项耗时且重复的任务,对拥有大量客户的企业而言尤其是这样。

💡 场景 & 背景

有一些场景下,如果我们能借助于AI自动做一些内容和附件等识别,可以极大提高效率,例如以下这些场景:

  • 保险公司的客户索赔管理。
  • 电信和公用事业企业客户投诉处理。
  • 银行处理各种与抵押贷款相关的请求。
  • 旅游行业公司的预订相关电子邮件。

如果我们希望尽量智能与自动化地进行电子邮件处理,我们需要完成以下任务:

  • 电子邮件分流。我们希望智能理解邮件,并将其转到相应的专门业务部门进行处理。在AI的视角我们可以通过电子邮件的意图分类来尝试解决这个问题。
  • 信息提取。根据确定的意图,提取一些信息给到下游流程,例如在CRM系统中记录客户案例进行跟踪。

在本篇文章中,ShowMeAI 将专注于意图检测部分,我们将一起看一看如何设计一个AI系统来解决这个任务。

💦 场景 1

假设一家保险公司客户,想申请理赔与报销。 这个场景下他会填写保险报销表,并将其连同药物收据和银行 ID 文件附在电子邮件中。可能的一个电子邮件可能长这样:

2f2e289cce62afbaab8d51e31e40b687.png

💦 场景 2

假设一家银行的客户,搬家并对之前的某项服务费有疑问。 如果选择发送电子邮件来进行申请和处理,邮件可能长这样:

02b5e08884de5564d26642840c06a822.png

💡 实现方案

cfe21420697617bddda6f042d9f64fa7.png
本文会涉及到NLP相关知识,有兴趣更系统全面了NLP知识的宝宝,建议阅读 ShowMeAI 整理的自然语言处理相关教程和文章

📘深度学习教程:吴恩达专项课程 · 全套笔记解读
📘深度学习教程 | 自然语言处理与词嵌入
📘NLP教程 | 斯坦福CS224n · 课程带学与全套笔记解读
📘NLP教程(1) - 词向量、SVD分解与Word2Vec
📘NLP教程(2) - GloVe及词向量的训练与评估

💦 架构初览

我们前面提到了,在意图识别场景中,我们经常会视作『多分类问题』来处理,但在我们当前场景下,有可能邮件覆盖多个意图目的,或者本身意图之间有重叠,因此我们先将其视为多标签分类问题。

然而,在许多现实生活场景中,多标签分类系统可能会遇到一些问题:

  • 电子邮件在大多数情况下是关于一个主要意图,有时它们具有次要意图,在极少数情况下还有第三个意图。
  • 很难找到涵盖所有多标签组合的标签数据。

我们可以试着构建一个融合方案来解决,可以预测主要意图并检测剩余的次要意图和第三意图,我们可以设计多输出神经网络网络来实现这一点,如下图所示。

我们涉及到2类输入:电子邮件正文 和 附件,在深度学习场景下,我们都需要对它们做向量化标准。如下图的架构是一个可行的尝试方案:我们用transformer类的模型对正文进行编码和向量化标注,而对于附件,可以用相对简单的NLP编码器,比如TF-IDF。

fc19b5ef7f0b62b1a307fb1bc4b7d4a4.png

💦 实现细节

① 电子邮件正文:AI理解&处理

整个方案中最重要的输入是正文数据,我们在深度学习中,需要把非结构化的数据表征为向量化形式,方便模型进行信息融合和建模,在自然语言处理NLP领域,我们也有一些典型的向量化嵌入技术可以进行对文本处理。

最『简单』的处理方法之一是使用 📘TF-iDF + 📘PCA

391e13295a4699f7eb4f1b205f558cc5.png

对于文本(词与句)嵌入更现代一些的 NLP 方法,例如 Word2Vec 和 📘Doc2Vec ,它们分别使用浅层神经网络来学习单词和文本嵌入。大家可以使用 gensim 工具库或者 fasttext 工具库完成文本嵌入,也有很多预训练的词嵌入和文本嵌入的模型可以使用。

ff5bdff59aa3440eab879d6a3168a1e8.png
关于 TF-IDF 和 DocVec 的详细知识,可以查看 ShowMeAI 的文章 📘 基于NLP文档嵌入技术的基础文本搜索引擎构建
ba25b8346291e370dfdce19d9591cf1a.png

现在最先进的技术是基于 transformer 的预训练语言模型(例如 📘BERT)来构建『上下文感知』文本嵌入。我们上面的方案中也是使用最先进的深度学习方法——直接使用 📘HuggingFace的 📘预训练模型 和 📘API 来构建正文文本嵌入。

beab713bd588a01c830f79543235e7a4.png

transformer 系列的模型有很多隐层,我们可以有很多方式获取文本的向量化表征,比如对最后的隐层做『平均池化』获得文本嵌入,我们也可以用倒数第二层或倒数第三层(它们在理论上较少依赖于训练语言模型的文本语料库)。

对文本做嵌入表示的示例代码如下:

# 大家可以先命令行执行下列代码安装sentence-transformers
# pip install -U sentence-transformers

from sentence_transformers import SentenceTransformer
# 需要编码的文本内容列表
sentences = ["This is example sentence 1", "This is example sentence 2"]

# 编码,文本向量化嵌入表征
model = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
embeddings = model.encode(sentences)
print(embeddings)

② 电子邮件附件:AI理解&处理

我们在这个解决方案中,单独把邮件附件拿出来做处理了。在有些处理方式中,会把附件的内容和正文直接拼接,用上面介绍的方式进行编码,但这样处理不够精细,可能有如下问题而导致最后模型效果不佳:

  • 附件文本可能非常大,包含许多多余的内容,这些内容可能会淹没电子邮件正文中更重要的微妙细节。
  • 对于意图检测而言,重要的是文档的性质或类型,而不是详细的内容。

基于上述考虑,我们单独训练附件分类器来生成附件的密集向量表示。可能我们的附件包含不规则的 PDF 或者图片,我们可能要考虑用 OCR 引擎(例如 Tesseract)进行识别和提取部分内容,

假设我们的附件数量为N,DC 是经过训练的附件分类器。DC对每个附件预测处理输出一个向量(文档类型分布概率向量)。 由于最终的附件向量表示需要具有固定长度(但是N是不确定的),我们在附件维度上使用最大池化得到统一长度的表征。

以下是为给定电子邮件生成附件向量化表征的代码示例:

# DC是文档分类器
distributions = []
for attachment in attachments:
  current_distribution = DC(attachent)
  distributions.append(current_distribution)
np_distributions = np.array(distributions) #维度为(X,N)的附件向量组
attachments_feat_vec = np.max(np_distributions, axis=0) #最大池化

③ 搭建多数据源混合网络

下面部分使用到了TensorFlow工具库,ShowMeAI 制作了快捷即查即用的工具速查表手册,大家可以在下述位置获取:

在上述核心输入处理和表征后,我们就可以使用 Tensorflow 构建一个多分支神经网络了。参考代码如下:

def build_hybrid_mo_model(bert_input_size, att_features_size, nb_classes):
    emb_input = tf.keras.Input(shape=(bert_input_size,), name="text_embeddings_input")
    att_classif_input = tf.keras.Input(shape=(att_features_size,), name="attachments_repr_input")


    DenseEmb1 = tf.keras.layers.Dense(units=256, activation='relu')(emb_input)
    compressed_embs = tf.keras.layers.Dense(units=32, activation='relu', name="compression_layer")(DenseEmb1)
    combined_features = tf.keras.layers.concatenate([compressed_embs,att_classif_input], axis=1)


    Dense1= tf.keras.layers.Dense(units=128)(combined_features)
    Dense2= tf.keras.layers.Dense(units=128)(Dense1)


    out1 = tf.keras.layers.Dense(units=nb_classes, name="intention_category_output")(Dense2)
    out2 = tf.keras.layers.Dense(units=1, name="information_request_output")(Dense2)


    model = tf.keras.Model(inputs=[emb_input,att_classif_input], outputs=[out1, out2])
    losses = {
        "intention_category_output" : tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
        "information_request_output" : tf.keras.losses.BinaryCrossentropy(from_logits=True)}


    model.compile(optimizer="adam",loss= losses,  metrics=["accuracy"])


    print (model.summary())
    
    return model

构建完模型之后,可以通过tf.keras.utils.plot_model打印出模型架构,如下图所示:

28dfe9b8a36677cc6605fc6fa332129f.png

上图的模型架构,和我们在『架构初览』板块的设计完全一致它包含更多的细节信息:

  • 电子邮件正文文本嵌入,维度为768维
  • 附件文件包含8种类型,向量化表征为8维

模型的输出部分包含:

  • 7个主要意图
  • 1个次要意图

④ 训练&评估

作为测试,作者在银行业务相关电子邮件的专有数据集上训练了模型,具体情况如下:

  • 数据集由 1100 封电子邮件组成,包含 7 个主要意图,但分布不均。
  • 构建的神经网络包含 22.7w 个参数( 具体细节如上图,大家也可以通过model.summary()输出模型信息)。
  • 以batch size大小为32训练了 50 个 epoch
  • 实际没有使用到GPU,在16核的CPU上做的训练(但大家使用GPU一定有更快的速度)
  • 主要意图分类任务上达到了 87% 的加权 F1 分数平均值。如果不使用附件,加权 F1 分数平均值降低10%。(可见2部分信息都非常重要)

💡 总结

我们通过对电子邮件自动意图识别和归类场景进行分析和处理,构建了有效的混合网络高效地完成了这个任务。这里面非常值得思考的点,是不同类型的数据输入与预处理,合适的技术选型(并非越复杂越好),充分又恰当的输入信息融合方式。

大家在类似的场景问题下,还可以尝试不同的正文预处理和附件分类模型,观察效果变化。其余的一些改进点包括,对于预估不那么肯定(概率偏低)的邮件样本,推送人工审核分类,会有更好的效果。

参考资料

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
机器学习/深度学习 人工智能 算法
阿里公开自研AI集群细节:64个GPU,百万分类训练速度提升4倍
从节点架构到网络架构,再到通信算法,阿里巴巴把自研的高性能AI集群技术细节写成了论文,并对外公布。
阿里公开自研AI集群细节:64个GPU,百万分类训练速度提升4倍
|
4月前
|
人工智能 数据挖掘 语音技术
通义语音AI技术问题之说话人识别的两种类型分类如何解决
通义语音AI技术问题之说话人识别的两种类型分类如何解决
77 5
|
7月前
|
机器学习/深度学习 数据采集 人工智能
【AI 场景】设计一个 AI 系统来识别和分类图像中的对象
【5月更文挑战第3天】【AI 场景】设计一个 AI 系统来识别和分类图像中的对象
|
7月前
|
人工智能 算法 数据处理
App Inventor 2 Personal Image Classifier (PIC) 拓展:自行训练AI图像识别模型,开发图像识别分类App
这里仅仅介绍一下AI图像识别App的实现原理,AI的基础技术细节不在本文讨论范围。通过拓展即可开发出一款完全自行训练AI模型,用于特定识别场景的App了。
183 1
|
机器学习/深度学习 传感器 人工智能
在AI Earth农作物种植有没有对应的模型呢?例如:知道某个地块的坐标,可以获取农作物的分类、苗情、长势、成熟度、估产、农闲田、灾害、土壤墒情等这方面?
在AI Earth农作物种植有没有对应的模型呢?例如:知道某个地块的坐标,可以获取农作物的分类、苗情、长势、成熟度、估产、农闲田、灾害、土壤墒情等这方面?
79 1
|
机器学习/深度学习 JSON 人工智能
HarmonyOS学习路之开发篇—AI功能开发(IM类意图识别)
IM类意图识别,是指利用机器学习技术,针对用户短信或聊天类APP等IM应用的文本消息进行内容分析,并识别出消息内容代表的用户意图。
|
机器学习/深度学习 人工智能 JSON
HarmonyOS学习路之开发篇—AI功能开发(助手类意图识别)
随着人机交互越来越普遍,设备需要理解用户下达的各种指令,方便用户的操作。助手类意图识别能够利用机器学习技术,对用户发送给设备的文本消息进行语义分析和意图识别,进而衍生出各种智能的应用场景,使设备更智慧、更智能。
|
机器学习/深度学习 人工智能 自然语言处理
AI 系统简介和分类
AI 系统简介和分类
410 0
|
机器学习/深度学习 人工智能
AI遮天传 DL-回归与分类
AI遮天传 DL-回归与分类
|
人工智能 达摩院 大数据
商标智能检索识别 AI推荐商标分类
智能检索识别近似商标,提升商标注册成功率
商标智能检索识别 AI推荐商标分类