KITTI自动驾驶数据集的点云多种视图可视化

简介: KITTI自动驾驶数据集的点云多种视图可视化

1. 数据集准备


KITTI数据集作为自动驾驶领域的经典数据集之一,比较适合我这样的新手入门。以下资料是为了实现对KITTI数据集的可视化操作。首先在官网下载对应的数据:http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d,下载后数据的目录文件结构如下所示:


├── dataset
│   ├── KITTI
│   │   ├── object
│   │   │   ├──KITTI
│   │   │      ├──ImageSets
│   │   │   ├──training
│   │   │      ├──calib & velodyne & label_2 & image_2


2. 环境准备


这里使用了一个kitti数据集可视化的开源代码:https://github.com/kuixu/kitti_object_vis,按照以下操作新建一个虚拟环境,并安装所需的工具包。其中千万不要安装python3.7以上的版本,因为vtk不支持。


# 新建python=3.7的虚拟环境
conda create -n kitti_vis python=3.7 # vtk does not support python 3.8
conda activate kitti_vis
# 安装opencv, pillow, scipy, matplotlib工具包
pip install opencv-python pillow scipy matplotlib
# 安装3D可视化工具包(以下指令会自动安转所需的vtk与pyqt5)
conda install mayavi -c conda-forge
# 测试
python kitti_object.py --show_lidar_with_depth --img_fov --const_box --vis


3. KITTI数据集可视化


下面依次展示 KITTI 数据集可视化结果,这里通过设置 data_idx=10 来展示编号为000010的数据,代码中dataset需要修改为数据集实际路径。(最后会贴上完整代码)


def visualization():
    import mayavi.mlab as mlab
    dataset = kitti_object(os.path.join(ROOT_DIR, '../dataset/KITTI/object'))
    # determine data_idx
    data_idx = 100
    # Load data from dataset
    objects = dataset.get_label_objects(data_idx) 
    print("There are %d objects.", len(objects))
    img = dataset.get_image(data_idx)             
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
    img_height, img_width, img_channel = img.shape 
    pc_velo = dataset.get_lidar(data_idx)[:,0:3]  
    calib = dataset.get_calibration(data_idx)


代码来源于参考资料,在后面会贴上我自己修改的测试代码。以下包含9种可视化的操作:


  • 1. 图像显示
def show_image(self):
    Image.fromarray(self.img).show()
    cv2.waitKey(0)


结果展示:

image.png


2. 图片上绘制2D bbox

 

def show_image_with_2d_boxes(self):
        show_image_with_boxes(self.img, self.objects, self.calib, show3d=False)
        cv2.waitKey(0)


结果展示:

image.png


3. 图片上绘制3D bbox

 

def show_image_with_3d_boxes(self):
        show_image_with_boxes(self.img, self.objects, self.calib, show3d=True)
        cv2.waitKey(0)


结果展示:

image.png


4. 图片上绘制Lidar投影

 

def show_image_with_lidar(self):
        show_lidar_on_image(self.pc_velo, self.img, self.calib, self.img_width, self.img_height)
        mlab.show()


结果展示:

image.png


5. Lidar绘制3D bbox

 

def show_lidar_with_3d_boxes(self):
        show_lidar_with_boxes(self.pc_velo, self.objects, self.calib, True, self.img_width, self.img_height)
        mlab.show()


结果展示:

image.png


6. Lidar绘制FOV图

 

def show_lidar_with_fov(self):
        imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(self.pc_velo, self.calib,
                                                                  0, 0, self.img_width, self.img_height, True)
        draw_lidar(imgfov_pc_velo)
        mlab.show()


结果展示:

image.png


7. Lidar绘制3D图

 

def show_lidar_with_3dview(self):
        draw_lidar(self.pc_velo)
        mlab.show()


结果展示:

image.png


8. Lidar绘制BEV图

BEV图的显示与其他视图不一样,这里的代码需要有点改动,因为这里需要lidar点云的其他维度信息,所以输入不仅仅是xyz三个维度。改动代码:


# 初始
pc_velo = dataset.get_lidar(data_idx)[:, 0:3]
# 改为(要增加其他维度才可以查看BEV视图)
pc_velo = dataset.get_lidar(data_idx)[:, 0:4]


测试代码:

def show_lidar_with_bev(self):
        from kitti_util import draw_top_image, lidar_to_top
        top_view = lidar_to_top(self.pc_velo)
        top_image = draw_top_image(top_view)
        cv2.imshow("top_image", top_image)
        cv2.waitKey(0)


结果展示:

image.png


9. Lidar绘制BEV图+2D bbox

同样,这里的代码改动与3.8节一样,需要点云的其他维度信息

def show_lidar_with_bev_2d_bbox(self):
        show_lidar_topview_with_boxes(self.pc_velo, self.objects, self.calib)
        mlab.show()


结果展示:

image.png


  • 完整测试代码

参考代码:


import mayavi.mlab as mlab
from kitti_object import kitti_object, show_image_with_boxes, show_lidar_on_image, \
    show_lidar_with_boxes, show_lidar_topview_with_boxes, get_lidar_in_image_fov, \
    show_lidar_with_depth
from viz_util import draw_lidar
import cv2
from PIL import Image
import time
class visualization:
    # data_idx: determine data_idx
    def __init__(self, root_dir=r'E:\Study\Machine Learning\Dataset3d\kitti', data_idx=100):
        dataset = kitti_object(root_dir=root_dir)
        # Load data from dataset
        objects = dataset.get_label_objects(data_idx)
        print("There are {} objects.".format(len(objects)))
        img = dataset.get_image(data_idx)
        img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
        img_height, img_width, img_channel = img.shape
        pc_velo = dataset.get_lidar(data_idx)[:, 0:3]  # 显示bev视图需要改动为[:, 0:4]
        calib = dataset.get_calibration(data_idx)
        # init the params
        self.objects = objects
        self.img = img
        self.img_height = img_height
        self.img_width = img_width
        self.img_channel = img_channel
        self.pc_velo = pc_velo
        self.calib = calib
    # 1. 图像显示
    def show_image(self):
        Image.fromarray(self.img).show()
        cv2.waitKey(0)
    # 2. 图片上绘制2D bbox
    def show_image_with_2d_boxes(self):
        show_image_with_boxes(self.img, self.objects, self.calib, show3d=False)
        cv2.waitKey(0)
    # 3. 图片上绘制3D bbox
    def show_image_with_3d_boxes(self):
        show_image_with_boxes(self.img, self.objects, self.calib, show3d=True)
        cv2.waitKey(0)
    # 4. 图片上绘制Lidar投影
    def show_image_with_lidar(self):
        show_lidar_on_image(self.pc_velo, self.img, self.calib, self.img_width, self.img_height)
        mlab.show()
    # 5. Lidar绘制3D bbox
    def show_lidar_with_3d_boxes(self):
        show_lidar_with_boxes(self.pc_velo, self.objects, self.calib, True, self.img_width, self.img_height)
        mlab.show()
    # 6. Lidar绘制FOV图
    def show_lidar_with_fov(self):
        imgfov_pc_velo, pts_2d, fov_inds = get_lidar_in_image_fov(self.pc_velo, self.calib,
                                                                  0, 0, self.img_width, self.img_height, True)
        draw_lidar(imgfov_pc_velo)
        mlab.show()
    # 7. Lidar绘制3D图
    def show_lidar_with_3dview(self):
        draw_lidar(self.pc_velo)
        mlab.show()
    # 8. Lidar绘制BEV图
    def show_lidar_with_bev(self):
        from kitti_util import draw_top_image, lidar_to_top
        top_view = lidar_to_top(self.pc_velo)
        top_image = draw_top_image(top_view)
        cv2.imshow("top_image", top_image)
        cv2.waitKey(0)
    # 9. Lidar绘制BEV图+2D bbox
    def show_lidar_with_bev_2d_bbox(self):
        show_lidar_topview_with_boxes(self.pc_velo, self.objects, self.calib)
        mlab.show()
if __name__ == '__main__':
    kitti_vis = visualization()
    # kitti_vis.show_image()
    # kitti_vis.show_image_with_2d_boxes()
    # kitti_vis.show_image_with_3d_boxes()
    # kitti_vis.show_image_with_lidar()
    # kitti_vis.show_lidar_with_3d_boxes()
    # kitti_vis.show_lidar_with_fov()
    # kitti_vis.show_lidar_with_3dview()
    # kitti_vis.show_lidar_with_bev()
    kitti_vis.show_lidar_with_bev_2d_bbox()
    # print('...')
    # cv2.waitKey(0)


此外,下面再提供两份可视化代码。


4. 点云可视化


这里的同样使用的是上述的图例,且直接输入的KITTI数据集的.bin文件,即可显示点云图像。


参考代码:

import numpy as np
import mayavi.mlab
import os
# 000010.bin这里需要填写文件的位置
# bin_file = '../data/object/training/velodyne/000000.bin'
# assert os.path.exists(bin_file), "{} is not exists".format(bin_file)
kitti_file = r'E:\Study\Machine Learning\Dataset3d\kitti\training\velodyne\000100.bin'
pointcloud = np.fromfile(file=kitti_file, dtype=np.float32, count=-1).reshape([-1, 4])
# pointcloud = np.fromfile(str("000010.bin"), dtype=np.float32, count=-1).reshape([-1, 4])
print(pointcloud.shape)
x = pointcloud[:, 0]  # x position of point
y = pointcloud[:, 1]  # y position of point
z = pointcloud[:, 2]  # z position of point
r = pointcloud[:, 3]  # reflectance value of point
d = np.sqrt(x ** 2 + y ** 2)  # Map Distance from sensor
vals = 'height'
if vals == "height":
    col = z
else:
    col = d
fig = mayavi.mlab.figure(bgcolor=(0, 0, 0), size=(640, 500))
mayavi.mlab.points3d(x, y, z,
                     col,  # Values used for Color
                     mode="point",
                     colormap='spectral',  # 'bone', 'copper', 'gnuplot'
                     # color=(0, 1, 0),   # Used a fixed (r,g,b) instead
                     figure=fig,
                     )
x = np.linspace(5, 5, 50)
y = np.linspace(0, 0, 50)
z = np.linspace(0, 5, 50)
mayavi.mlab.plot3d(x, y, z)
mayavi.mlab.show()


输出结果:

image.png


ps:这里的输出点云结果相比上面的点云输出结果更加的完善,而且参考的中心坐标点也不一样。


5. 鸟瞰图可视化


代码中的鸟瞰图范围可以自行设置。同样,输入的也只需要是.bin文件即可展示其鸟瞰图。


参考代码:

import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
# 点云读取:000010.bin这里需要填写文件的位置
kitti_file = r'E:\Study\Machine Learning\Dataset3d\kitti\training\velodyne\000100.bin'
pointcloud = np.fromfile(file=kitti_file, dtype=np.float32, count=-1).reshape([-1, 4])
# 设置鸟瞰图范围
side_range = (-40, 40)  # 左右距离
# fwd_range = (0, 70.4)  # 后前距离
fwd_range = (-70.4, 70.4)
x_points = pointcloud[:, 0]
y_points = pointcloud[:, 1]
z_points = pointcloud[:, 2]
# 获得区域内的点
f_filt = np.logical_and(x_points > fwd_range[0], x_points < fwd_range[1])
s_filt = np.logical_and(y_points > side_range[0], y_points < side_range[1])
filter = np.logical_and(f_filt, s_filt)
indices = np.argwhere(filter).flatten()
x_points = x_points[indices]
y_points = y_points[indices]
z_points = z_points[indices]
res = 0.1  # 分辨率0.05m
x_img = (-y_points / res).astype(np.int32)
y_img = (-x_points / res).astype(np.int32)
# 调整坐标原点
x_img -= int(np.floor(side_range[0]) / res)
y_img += int(np.floor(fwd_range[1]) / res)
print(x_img.min(), x_img.max(), y_img.min(), x_img.max())
# 填充像素值
height_range = (-2, 0.5)
pixel_value = np.clip(a=z_points, a_max=height_range[1], a_min=height_range[0])
def scale_to_255(a, min, max, dtype=np.uint8):
    return ((a - min) / float(max - min) * 255).astype(dtype)
pixel_value = scale_to_255(pixel_value, height_range[0], height_range[1])
# 创建图像数组
x_max = 1 + int((side_range[1] - side_range[0]) / res)
y_max = 1 + int((fwd_range[1] - fwd_range[0]) / res)
im = np.zeros([y_max, x_max], dtype=np.uint8)
im[y_img, x_img] = pixel_value
# imshow (灰度)
im2 = Image.fromarray(im)
im2.show()
# imshow (彩色)
# plt.imshow(im, cmap="nipy_spectral", vmin=0, vmax=255)
# plt.show()


结果展示:

image.png

后续的工作会加深对点云数据的理解,整个可视化项目的工程见:KITTI数据集的可视化项目,有需要的朋友可以自行下载。


参考资料:


1. KITTI自动驾驶数据集可视化教程


2. kitti数据集在3D目标检测中的入门


3. kitti数据集在3D目标检测中的入门(二)可视化详解


4. kitti_object_vis项目



目录
相关文章
|
存储 数据采集 传感器
一文多图搞懂KITTI数据集下载及解析
一文多图搞懂KITTI数据集下载及解析
14808 3
一文多图搞懂KITTI数据集下载及解析
|
存储 机器学习/深度学习 算法
MMDetection3d对KITT数据集的训练与评估介绍
MMDetection3d对KITT数据集的训练与评估介绍
2628 0
MMDetection3d对KITT数据集的训练与评估介绍
|
机器学习/深度学习 传感器 算法
【论文速递】AAAI2023 - BEVDepth: 用于多视图三维物体检测的可靠深度采集
【论文速递】AAAI2023 - BEVDepth: 用于多视图三维物体检测的可靠深度采集
|
机器学习/深度学习 算法 计算机视觉
3D目标检测框架 MMDetection3D环境搭建 docker篇
本文介绍如何搭建3D目标检测框架,使用docker快速搭建MMDetection3D的开发环境,实现视觉3D目标检测、点云3D目标检测、多模态3D目标检测等等。
1367 0
|
机器学习/深度学习 存储 编解码
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
13655 1
Open3d系列 | 3. Open3d实现点云上采样、点云聚类、点云分割以及点云重建
|
存储 数据采集 数据可视化
Open3d系列 | 1. Open3d实现点云数据读写、点云配准、点云法向量计算
Open3d系列 | 1. Open3d实现点云数据读写、点云配准、点云法向量计算
16512 1
Open3d系列 | 1. Open3d实现点云数据读写、点云配准、点云法向量计算
|
存储 传感器 数据可视化
3D目标检测数据集 KITTI(标签格式解析、3D框可视化、点云转图像、BEV鸟瞰图)
本文介绍在3D目标检测中,理解和使用KITTI 数据集,包括KITTI 的基本情况、下载数据集、标签格式解析、3D框可视化、点云转图像、画BEV鸟瞰图等,并配有实现代码。
3550 1
|
传感器 机器学习/深度学习 编解码
一文尽览 | 基于点云、多模态的3D目标检测算法综述!(Point/Voxel/Point-Voxel)(下)
目前3D目标检测领域方案主要包括基于单目、双目、激光雷达点云、多模态数据融合等方式,本文主要介绍基于激光雷达雷达点云、多模态数据的相关算法,下面展开讨论下~
一文尽览 | 基于点云、多模态的3D目标检测算法综述!(Point/Voxel/Point-Voxel)(下)
|
机器学习/深度学习 传感器 算法
单目3D目标检测 方法综述——直接回归方法、基于深度信息方法、基于点云信息方法
本文综合整理单目3D目标检测的方法模型,包括:基于几何约束的直接回归方法,基于深度信息的方法,基于点云信息的方法。万字长文,慢慢阅读~ 直接回归方法 涉及到模型包括:MonoCon、MonoDLE、MonoFlex、CUPNet、SMOKE等。 基于深度信息的方法 涉及到模型包括:MF3D、MonoGRNet、D4LCN、MonoPSR等。 基于点云信息的方法 涉及到模型包括:Pseudo lidar、DD3D、CaDDN、LPCG等。
2380 2
|
机器学习/深度学习 传感器 编解码
【多传感器融合】BEVFusion: 激光雷达和摄像头融合框架 NeurIPS 2022
BEVFusion提出一个融合多摄像头和激光雷达数据的框架,可用于3D检测。在自动驾驶领域,通过独立处理并融合摄像头和激光雷达数据,可以显著提升3D对象检测的准确性和稳健性,尤其是在激光雷达可能出现故障的真实场景中。
3523 57
【多传感器融合】BEVFusion: 激光雷达和摄像头融合框架 NeurIPS 2022