【云原生Kubernetes系列第二篇】Kubernetes(k8s)核心组件(对的人兜兜转转最后还是会遇见)(二)

简介: 【云原生Kubernetes系列第二篇】Kubernetes(k8s)核心组件(对的人兜兜转转最后还是会遇见)(二)

二、Kubernetes核心概念


Kubernetes 包含多种类型的资源对象:Pod、Label、Service、Replication Controller 等。


所有的资源对象都可以通过 Kubernetes 提供的 kubectl 工具进行增、删、改、查等操作,并将其保存在 etcd 中持久化存储。


Kubernets其实是一个高度自动化的资源控制系统,通过跟踪对比etcd存储里保存的资源期望状态与当前环境中的实际资源状态的差异,来实现自动控制和自动纠错等高级功能。


2.1 Pod

Pod是 Kubernetes 创建或部署的最小/最简单的基本单位,一个 Pod 代表集群上正在运行的一个进程。可以把 Pod 理解成豌豆荚,而同一 Pod 内的每个容器是一颗颗豌豆。


一个 Pod 由一个或多个容器组成,Pod 中容器共享网络、存储和计算资源,在同一台 Docker 主机上运行。一个 Pod 里可以运行多个容器,又叫边车模式(SideCar)。而在生产环境中一般都是单个容器或者具有强关联互补的多个容器组成一个 Pod。


同一个 Pod 之间的容器可以通过 localhost 互相访问,并且可以挂载 Pod 内所有的数据卷;但是不同的 Pod 之间的容器不能用 localhost 访问,也不能挂载其他 Pod 的数据卷。


2.2 Pod 控制器

Pod 控制器是 Pod 启动的一种模版,用来保证在K8S里启动的 Pod 应始终按照用户的预期运行(副本数、生命周期、健康状态检查等)。


K8S 内提供了众多的 Pod 控制器,常用的有以下几种:


控制器 作用
Deployment 无状态应用部署。Deployment 的作用是管理和控制 Pod 和 ReplicaSet,管控它们运行在用户期望的状态中
Replicaset 确保预期的 Pod 副本数量。ReplicaSet 的作用就是管理和控制 Pod,管控他们好好干活。但是,ReplicaSet 受控于 Deployment
Daemonset 确保所有节点运行同一类 Pod,保证每个节点上都有一个此类 Pod 运行,通常用于实现系统级后台任务。
Statefulset 有状态应用部署
Job 一次性任务。根据用户的设置,Job 管理的 Pod 把任务成功完成就自动退出了。
Cronjob 周期性计划性任务

可以理解成 Deployment 就是总包工头,主要负责监督底下的工人 Pod 干活,确保每时每刻有用户要求数量的 Pod 在工作。如果一旦发现某个工人 Pod 不行了,就赶紧新拉一个 Pod 过来替换它。而ReplicaSet 就是总包工头手下的小包工头。


从 K8S 使用者角度来看,用户会直接操作 Deployment 部署服务,而当 Deployment 被部署的时候,K8S 会自动生成要求的 ReplicaSet 和 Pod。用户只需要关心 Deployment 而不操心 ReplicaSet。


资源对象 Replication Controller 是 ReplicaSet 的前身,官方推荐用 Deployment 取代 Replication Controller 来部署服务。



2.3 Label

标签,是 K8S 特色的管理方式,便于分类管理资源对象。


Label 可以附加到各种资源对象上,例如 Node、Pod、Service、RC 等,用于关联对象、查询和筛选。一个 Label 是一个 key-value 的键值对,其中 key 与 value 由用户自己指定。一个资源对象可以定义任意数量的Label,同一个Label 也可以被添加到任意数量的资源对象中,也可以在对象创建后动态添加或者删除。可以通过给指定的资源对象捆绑一个或多个不同的 Label,来实现多维度的资源分组管理功能。与 Label 类似的,还有 Annotation(注释)。


区别在于有效的标签值必须为63个字符或更少,并且必须为空或以字母数字字符([a-z0-9A-Z])开头和结尾,中间可以包含横杠(-)、下划线(_)、点(.)和字母或数字。注释值则没有字符长度限制。


2.4 Label selector

给某个资源对象定义一个 Label,就相当于给它打了一个标签;随后可以通过标签选择器(Label selector)查询和筛选拥有某些 Label 的资源对象。


标签选择器目前有两种:


基于等值关系(等于、不等于)

基于集合关系(属于、不属于、存在)


2.5 Service

每个Service其实就是我们经常提起的微服务架构中的一个微服务


在K8S的集群里,虽然每个Pod会被分配一个单独的IP地址,但由于Pod是有生命周期的(它们可以被创建,而且销毁之后不会再启动),随时可能会因为业务的变更,导致这个 IP 地址也会随着 Pod 的销毁而消失。


Service 就是用来解决这个问题的核心概念。


K8S 中的 Service 并不是我们常说的“服务”的含义,而更像是网关层,可以看作一组提供相同服务的Pod的对外访问接口、流量均衡器。Service 作用于哪些 Pod 是通过标签选择器来定义的。


在 K8S 集群中,Service 可以看作一组提供相同服务的 Pod 的对外访问接口。客户端需要访问的服务就是 Service 对象。每个 Service 都有一个固定的虚拟 ip(这个 ip 也被称为 Cluster IP),自动并且动态地绑定后端的 Pod,所有的网络请求直接访问 Service 的虚拟 ip,Service 会自动向后端做转发。Service 除了提供稳定的对外访问方式之外,还能起到负载均衡(Load Balance)的功能,自动把请求流量分布到后端所有的服务上,Service 可以做到对客户透明地进行水平扩展(scale)。而实现 service 这一功能的关键,就是 kube-proxy。kube-proxy 运行在每个节点上,监听 API Server 中服务对象的变化, 可通过以下三种流量调度模式: userspace(废弃)、iptables(濒临废弃)、ipvs(推荐,性能最好)来实现网络的转发。


Pod、RC与Service的逻辑关系



Kubernetes的Service定义了一个服务的访问入口地址,前端的应用(Pod)通过这个入口地址访问其背后的一组由Pod副本组成的集群实例,Service与其后端Pod副本集群之间则是通过Label Selector来实现无缝对接的。RC的作用实际上是保证Service的服务能力和服务质量始终符合预期标准。


2.6 Ingress

Service 主要负责 K8S 集群内部的网络拓扑,那么集群外部怎么访问集群内部呢?这个时候就需要 Ingress 了。Ingress 是整个 K8S 集群的接入层,负责集群内外通讯。


Ingress 是 K8S 集群里工作在 OSI 网络参考模型下,第7层的应用,对外暴露的接囗,典型的访问方式是 http/https。Service 只能进行第四层的流量调度,表现形式是 ip+port。Ingress 则可以调度不同业务域、不同URL访问路径的业务流量。


比如:客户端请求 http://www.stevelu.com:port —> Ingress —> Service —> Pod


2.7 Name

由于 K8S 内部,使用 “资源” 来定义每一种逻辑概念(功能),所以每种 “资源”,都应该有自己的 “名称”。“资源” 有 api 版本(apiversion)、类别(kind)、元数据(metadata)、定义清单(spec)、状态(status)等配置信息。“名称” 通常定义在 “资源” 的 “元数据” 信息里。在同一个 namespace 空间中必须是唯一的。


2.8 Namespace

Namespace(命名空间)是Kubernetes系统中的另一个非常重要的概念,Namespace在很多情况下用于实现多租户的资源隔离。Namespace通过将集群内部的资源对象“分配”到不同的Namespace中,形成逻辑上分组的不同项目、小组或用户组,便于不同的分组在共享使用整个集群的资源的同时还能被分别管理。


Namespace 是为了把一个 K8S 集群划分为若干个资源不可共享的虚拟集群组而诞生的。不同 Namespace 内的 “资源” 名称可以相同,相同 Namespace 内的同种 “资源”,“名称” 不能相同。合理的使用 K8S 的 Namespace,可以使得集群管理员能够更好的对交付到 K8S 里的服务进行分类管理和浏览。


K8S 里默认存在的 Namespace 有


default


kube-system


kube-public 等

相关实践学习
通过Ingress进行灰度发布
本场景您将运行一个简单的应用,部署一个新的应用用于新的发布,并通过Ingress能力实现灰度发布。
容器应用与集群管理
欢迎来到《容器应用与集群管理》课程,本课程是“云原生容器Clouder认证“系列中的第二阶段。课程将向您介绍与容器集群相关的概念和技术,这些概念和技术可以帮助您了解阿里云容器服务ACK/ACK Serverless的使用。同时,本课程也会向您介绍可以采取的工具、方法和可操作步骤,以帮助您了解如何基于容器服务ACK Serverless构建和管理企业级应用。 学习完本课程后,您将能够: 掌握容器集群、容器编排的基本概念 掌握Kubernetes的基础概念及核心思想 掌握阿里云容器服务ACK/ACK Serverless概念及使用方法 基于容器服务ACK Serverless搭建和管理企业级网站应用
目录
相关文章
|
13天前
|
Kubernetes Cloud Native Docker
云原生时代的容器化实践:Docker和Kubernetes入门
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术成为企业提升敏捷性和效率的关键。本篇文章将引导读者了解如何利用Docker进行容器化打包及部署,以及Kubernetes集群管理的基础操作,帮助初学者快速入门云原生的世界。通过实际案例分析,我们将深入探讨这些技术在现代IT架构中的应用与影响。
54 2
|
9天前
|
Kubernetes Cloud Native 开发者
云原生入门:Kubernetes的简易指南
【10月更文挑战第41天】本文将带你进入云原生的世界,特别是Kubernetes——一个强大的容器编排平台。我们将一起探索它的基本概念和操作,让你能够轻松管理和部署应用。无论你是新手还是有经验的开发者,这篇文章都能让你对Kubernetes有更深入的理解。
|
13天前
|
Kubernetes 监控 负载均衡
深入云原生:Kubernetes 集群部署与管理实践
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其弹性、可扩展性成为企业IT架构的首选。本文将引导你了解如何部署和管理一个Kubernetes集群,包括环境准备、安装步骤和日常维护技巧。我们将通过实际代码示例,探索云原生世界的秘密,并分享如何高效运用这一技术以适应快速变化的业务需求。
42 1
|
17天前
|
运维 Kubernetes Cloud Native
Kubernetes云原生架构深度解析与实践指南####
本文深入探讨了Kubernetes作为领先的云原生应用编排平台,其设计理念、核心组件及高级特性。通过剖析Kubernetes的工作原理,结合具体案例分析,为读者呈现如何在实际项目中高效部署、管理和扩展容器化应用的策略与技巧。文章还涵盖了服务发现、负载均衡、配置管理、自动化伸缩等关键议题,旨在帮助开发者和运维人员掌握利用Kubernetes构建健壮、可伸缩的云原生生态系统的能力。 ####
|
18天前
|
存储 运维 Kubernetes
云原生之旅:Kubernetes的弹性与可扩展性探索
【10月更文挑战第32天】在云计算的浪潮中,云原生技术以其独特的魅力成为开发者的新宠。本文将深入探讨Kubernetes如何通过其弹性和可扩展性,助力应用在复杂环境中稳健运行。我们将从基础架构出发,逐步揭示Kubernetes集群管理、服务发现、存储机制及自动扩缩容等核心功能,旨在为读者呈现一个全景式的云原生平台视图。
27 1
|
11天前
|
Cloud Native 安全 数据安全/隐私保护
云原生架构下的微服务治理与挑战####
随着云计算技术的飞速发展,云原生架构以其高效、灵活、可扩展的特性成为现代企业IT架构的首选。本文聚焦于云原生环境下的微服务治理问题,探讨其在促进业务敏捷性的同时所面临的挑战及应对策略。通过分析微服务拆分、服务间通信、故障隔离与恢复等关键环节,本文旨在为读者提供一个关于如何在云原生环境中有效实施微服务治理的全面视角,助力企业在数字化转型的道路上稳健前行。 ####
|
12天前
|
运维 Kubernetes Cloud Native
云原生技术:容器化与微服务架构的完美结合
【10月更文挑战第37天】在数字化转型的浪潮中,云原生技术以其灵活性和高效性成为企业的新宠。本文将深入探讨云原生的核心概念,包括容器化技术和微服务架构,以及它们如何共同推动现代应用的发展。我们将通过实际代码示例,展示如何在Kubernetes集群上部署一个简单的微服务,揭示云原生技术的强大能力和未来潜力。
|
22天前
|
弹性计算 Kubernetes Cloud Native
云原生架构下的微服务设计原则与实践####
本文深入探讨了在云原生环境中,微服务架构的设计原则、关键技术及实践案例。通过剖析传统单体架构面临的挑战,引出微服务作为解决方案的优势,并详细阐述了微服务设计的几大核心原则:单一职责、独立部署、弹性伸缩和服务自治。文章还介绍了容器化技术、Kubernetes等云原生工具如何助力微服务的高效实施,并通过一个实际项目案例,展示了从服务拆分到持续集成/持续部署(CI/CD)流程的完整实现路径,为读者提供了宝贵的实践经验和启发。 ####
|
14天前
|
消息中间件 存储 Cloud Native
云原生架构下的数据一致性挑战与应对策略####
本文探讨了在云原生环境中,面对微服务架构的广泛应用,数据一致性问题成为系统设计的核心挑战之一。通过分析云原生环境的特点,阐述了数据不一致性的常见场景及其对业务的影响,并深入讨论了解决这些问题的策略,包括采用分布式事务、事件驱动架构、补偿机制以及利用云平台提供的托管服务等。文章旨在为开发者提供一套系统性的解决方案框架,以应对在动态、分布式的云原生应用中保持数据一致性的复杂性。 ####
|
8天前
|
Cloud Native 云计算 Docker
云原生技术的崛起:从容器化到微服务架构
云原生技术的崛起:从容器化到微服务架构
下一篇
无影云桌面