最佳实践—如何高效使用IN查询

简介: 本文将介绍如何在PolarDB-X中做IN查询时,选择最佳的Values个数。

功能介绍

实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:


SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)

随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。

70..png

功能介绍

实际场景中经常需要根据一些常量指标做IN查询,其中IN的字段是分区键。例如在电商场景中,所有订单都会记录到订单表Order,此表按照订单ID进行拆分,一个买家经常会根据已购买的订单列表,查询这些订单的具体信息。假设用户已购买的订单数是2,那么会产生2个值的IN条件查询,理论上查询会路由到两个2分片。查询SQL示例:


SELECT * FROM ORDER WHERE ORDER_ID IN (id1,id2)

随着用户购买的订单数增加,查询订单信息的IN值数量也会增加,这样一次查询很可能会路由到所有的分片,导致RT变高。下图展示了IN值数量、扫描分片数和RT之间的关系。

80..png

比对测试

在兼顾RT和吞吐的场景下,确定合理的IN查询的值的数量。在规格2×16C64G的节点,针对一张分表数量为64,分表记录数为百万级别的表在不同值数量、不同并发下做测试。在内核版本5.4.8-16069335(包含)之后针对IN查询进一步完善了动态裁剪分表的能力,下发的物理SQL也会裁剪掉多余的Values,下面是比对测试的结果。

  1. 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看RT变化。90.png
  2. 在不同并发下,不同Values值数量下测试,开启IN查询动态裁剪能力下,查看吞吐变化。100.png
  3. 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看RT变化。111.png
  4. 在不同并发下,不同Values值数量下测试,关闭IN查询动态裁剪能力下,查看吞吐变化。112.png
  5. 通过测试对比,可以得到以下结论:
  • 兼顾RT和吞吐时,建议IN的值的数量在8~32之间,基本对齐分布式Parallel Query的默认并发度(单节点的CPU内核数)。
  • 在内核版本5.4.8-16069335(包含)之后,在开启IN查询的动态裁剪能力下,吞吐和RT都有明显的优势,推荐您将内核版本升级至5.4.8及以上版本。
相关文章
|
2月前
|
数据库 数据库管理 索引
索引在提高查询性能方面的优势体现在哪些方面?
索引在提高查询性能方面具有多方面的显著优势
|
2月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
102 1
|
3月前
|
存储 数据管理 数据处理
提升数据处理效率:TDengine S3 的最佳实践与应用
在当今数据驱动的时代,如何高效地存储与处理海量数据成为了企业面临的一大挑战。为了解决这一问题,我们在 TDengine 3.2.2.0 首次发布了企业级功能 S3 存储。这一功能经历多个版本的迭代与完善后,逐渐发展成为一个全面和高效的解决方案。
60 0
|
5月前
|
SQL 缓存 监控
优化大型数据库查询的最佳实践
在处理大规模数据时,数据库查询性能的优化至关重要。本文探讨了几种优化大型数据库查询的最佳实践,包括索引策略、查询重写、数据分区和缓存机制。通过这些方法,开发人员可以显著提高查询效率,减少系统负担,提升用户体验。本文还结合实际案例,提供了具体的优化技巧和工具建议,帮助读者有效地管理和优化大型数据库系统。
|
5月前
|
API 项目管理 开发者
构建高效的技术文档策略
【8月更文挑战第7天】在技术快速发展的今天,有效的文档编写不仅能够加速知识传递,还能促进团队协作和项目管理。本文将探讨如何构建一个高效的技术文档策略,涵盖从规划到实施的各个阶段,旨在帮助读者理解并应用这些原则以提升工作效率和文档质量。
|
5月前
|
数据采集 监控 大数据
DATEWORES: 构建高效数据管道的最佳实践
【8月更文第14天】随着大数据技术的发展,数据管道已经成为现代数据处理流程的核心部分。本文旨在探讨如何利用DATEWORES——一个假设性的数据管道构建框架——来设计和实现高效的数据管道。我们将介绍DATEWORES的基本概念、架构设计,并通过具体案例演示如何运用该框架进行数据的抽取、转换与加载(ETL)。此外,我们还将讨论如何保证数据质量及数据完整性。
117 0
|
6月前
|
SQL 运维 监控
MSSQL性能调优实战:索引精细化构建、SQL查询深度优化与高效并发控制策略
在Microsoft SQL Server(MSSQL)的运维与优化过程中,索引的精细化构建、SQL查询的深度优化以及高效并发控制策略是提升数据库性能的关键
|
8月前
|
监控 测试技术 持续交付
构建高效持续集成系统的策略与实践
【5月更文挑战第28天】 在快速迭代的软件开发过程中,持续集成(CI)系统是确保代码质量和加速交付的关键。本文将探讨构建一个高效、可靠的CI系统的关键策略,并通过实际案例分析如何实现这些策略。我们将讨论自动化测试、容器化部署、监控和日志记录等主题,以及它们如何共同作用以提升开发流程的效率和稳定性。通过实施这些策略,团队可以显著减少集成问题,并缩短从开发到部署的时间。
104 2
|
7月前
|
缓存 监控 安全
构建高效的后端服务:最佳实践与性能优化策略
【6月更文挑战第27天】本文深入探讨了如何构建高效且可扩展的后端服务。我们将从系统架构设计、数据库优化、缓存机制、并发处理、安全性考量以及监控与日志管理等多个角度出发,为读者提供一系列实用的技术和策略。文章不仅涵盖了理论知识,还结合了实际案例分析,旨在帮助后端开发者提升服务性能,确保系统的高可用性和可靠性。
|
7月前
|
缓存 Java 数据库连接
构建高效数据库交互:Hibernate与JPA的性能优化策略
【6月更文挑战第25天】在大数据时代,优化Hibernate和JPA的数据库性能至关重要。本文探讨了优化策略:正确配置映射以减少冗余,利用JPQL/HQL提升查询效率,避免全字段选择,使用索引和分页,有效利用缓存策略,以及管理事务以平衡资源锁定。示例代码展示了分页查询的实现,以防止性能下降。
136 0