PCIe 均衡技术介绍(概要)

简介: PCIe 均衡技术介绍(概要)

1. PCIe 均衡技术介绍(概要)


1.1 信号均衡概念及意义


信号从发送端发出,经信道传输,到达接收端。在传输过程中,信号会发生失真,影响接收端对信号的正确判决。影响接收端接收信号质量的因素很多,比如传输速率,电磁干扰,信道质量等等。信号失真越严重,误码率 BER 越高,从而影响通信性能。


 为了在接收端获取到易于判决的优质信号,可以在发送端、传输链路途中或者接收端信号判决之前对信号进行调理改善,从而减小信号失真对通信性能的影响。这种对信号的调理,称作信号补偿,或称均衡。


 图 1 是不采用均衡与采用均衡接收端接收信号对比图,可见,采用均衡后,信号质量得到了较大改善,更容易接收端做出正确判决。


aebc890077b04910b6864360a45c8357.png


▲ 图 1: 接收端接收信号无均衡 vs. 有均衡

1.2 信号补偿技术


随着传输速率的提升,信号传输过程中趋肤效应及介质损耗越来越严重。为了在接收端正确恢复出发送的信号,需要对信号进行补偿。


 PCIe 信号补偿三大技术:发送端预加重(Pre-emphasis)、去加重(De-emphasis)和接收端均衡(Equalization)。预加重、去加重也被称为发送端均衡。各技术基本原理如图 2 所示。


ba7029a0e3cb4493ab1e3011dbcd3e96.png


▲ 图 2: 预加重、去加重、接收端均衡原理


 无源传输线路像是一个低通滤波器,PCIe 高速串行信号经信道从发送端传输到接收端后,其高频分量比低频分量衰减要大,而高频分量主要集中在信号的上升沿及下降沿。为了补偿这种高频衰减,在信号发送的时候,有意增强信号跳变沿的信号幅度,增高高频分量,即信号预加重;相比于预加重的方案,去加重则是降低跳变沿之外的信号幅度,削弱低频分量,同样能够达到目的。


 接收端均衡器相当于高通滤波器,来补偿失真的波形。



1.3 均衡系数协商


2.5 GT/s 及 5 GT/s 时,只在发送端进行固定参数的去加重均衡,无需进行均衡参数协商。传输速率上升至 8 GT/s 及以上后,收发端均衡更加复杂,收发端之间需要协商均衡系数,以获得最佳传输性能。收发端在链路训练的 Recovery.Equalization 状态进行均衡系数协商。整个 EQ 过程包括 4 个过程,称作 4 个 Phase。当速率为 8 GT/s 及以上时,EQ Phase 信息存放在了 TS1 的 EC 字段(Symbol 6,bit 0~1)。


1.3.1 Phase 0


  Phase 0 发生于协商下一 EQ 速率但未进入下一速率之前。Phase 0 期间 USP 回传 Preset 及 Coefficients 给 DSP。DSP 没有 Phase 0。



1.3.2 Phase 1


 PCIe 双方在 Phase 1 阶段通过互发 TS1 交换LF (Low Frequency,symbol7)、FS (Full Swing,Symbol 8) 、Post-cursor (Symbol 9) 进行均衡器的粗调,以获得 BER≤10-4的误码性能。



 DSP 给 USP 发送 EC=10b 的 TS1 来发起到 Phase 2 的跳转。



1.3.3 Phase 2


Phase 2 时,USP 作为 Master,调节 DSP 的 Tx 系数,具体可分为 Preset 调节及 Coefficient 调节。USP 在每条 Lane 上独立调整 DSP 的 Tx 设置及其自身(USP)的 Rx 设置,以确保 USP 能接收到符合要求的比特流(比如每条有效 Lane 上获得 BER≤10-12 的误码率)。


 DSP 建议其 Tx 系数及其使用的 Preset 值,在 Phase 1 阶段仅采用 Preset,在 Phase 2 采用 Preset 及 Tx 系数。USP 收到 TS1 后有可能会请求一组不同的系数或 Preset 设置,然后进行进一步评估,直到得到最优的设置。


 USP 完成 Phase 2 后,给 DSP 发送 EC=11b 的 TS1 进入 Phase 3。



1.3.4 Phase 3


Phase 3 时,DSP 作为 Master,调节 USP 的 Tx 系数。DSP 在每条 Lane 上独立调整 USP 的 Tx 设置及其自身(DSP)的 Rx 设置,调整方式与 Phase 2 相似。DSP 发送 EC=00b 的 TS1 来标志 Phase 3 及 EQ 的结束。


 以上四个 Phase 中,Phase0/1 采用 Preset 粗调,Phase2/3 精调。如果粗调阶段就达到了信号质量需求,也可以不进行精调。


 除非有特别配置,8 GT/s 以上速率时必须进行 EQ,至少在最高速率上要进行 EQ,中间速率可以跳过 EQ。当然仿真的时候可以设置 bypass_eq,或者设置 bypass_eq_to_highest_rate,仅在最高速率时进行 EQ。比如最高支持 32 GT/s,那么在 8 GT/s,16 GT/s 的时候可以跳过 EQ。从 32GT/s 降速时,需要重新进行链路训练并做 EQ。


 注意:Phase 2 及 Phase 3 中,DSP/USP 到底是谁作为 Master 调节谁的 Tx ?有些文章解读跟本文相反,读者请查看 PCIe 官方 Spec,来判断谁对谁错。




2. PCIe 均衡技术介绍(电气物理篇)


链接:PCIe均衡技术介绍(电气物理篇)





3. PCIe 均衡技术介绍(逻辑物理篇)


链接: PCIe均衡技术介绍(逻辑物理篇)




参考



  1. PCI ExPress Base Spec 5.0, Chapter 4.2.3, Chapter 4.2.6.4.2, Chapter 8.3.3, …


  1. PCIe Express Technology, Mindshare Inc, Chapter 13


  1. SNPS PHY databook,chapter 5.11


  1. 芯片中的数学——均衡器EQ和它在高速外部总线中的应用


  1. pcie equalization学习笔记


  1. PCIE 3.0中使用的动态均衡概念


  1. 理论篇|如何实现PCIe Gen3/Gen4接收端链路均衡测试?


  1. 实践篇|如何实现PCIe Gen3/Gen4接收端链路均衡测试?)


  1. PCIe Electrical PHY(2)-SerDes中的均衡技术



目录
相关文章
|
存储 编解码 算法
信道编码概述 |带你读《5G空口特性与关键技术》之六
纠错编码的目的,是通过尽可能小的冗余开销确保接收端能自动地纠正数据传输中所发生的差错。在同样的误码率下,所需要的开销越小,编码的效率也就越高。
11479 2
信道编码概述 |带你读《5G空口特性与关键技术》之六
路径损耗计算模型 | 带你读《大规模天线波束赋形技术原理与设计 》之二十五
本小节介绍 3D 信道的路损模型,是以 ITU 信道为基础拓展得到的。
12680 0
路径损耗计算模型  | 带你读《大规模天线波束赋形技术原理与设计 》之二十五
5G 物理资源 |带你读《5G空口特性与关键技术》之八
基站信道带宽是指基站侧上下行所支持的单个 NR 射频载波。同一频段下,支持不同的 UE 信道带宽。在基站信道带宽范围内,UE 信道带宽可以灵活配置。UE 的 BWP 的信号等于或者小于 RF 载波的载波资源块数时,基站就能够在任何载波资源块上收发 UE 的 1 个或者多个 BWP 的信号。
5G 物理资源  |带你读《5G空口特性与关键技术》之八
|
芯片
PCIe 均衡技术介绍(电气物理篇)
PCIe 均衡技术介绍(电气物理篇)
6097 0
PCIe 均衡技术介绍(电气物理篇)
|
Linux vr&ar Windows
实战篇|浅析MPS对PCIe系统稳定性的影响
MPS影响系统性能,还有一个更加重要的事情,MPS对PCIe系统稳定性也起着决定性的作用。
|
算法
PCIe 均衡技术介绍(逻辑物理篇)2
PCIe 均衡技术介绍(逻辑物理篇)
3911 1
PCIe 均衡技术介绍(逻辑物理篇)2
PCIe 均衡技术介绍(逻辑物理篇)
PCIe 均衡技术介绍(逻辑物理篇)
2749 0
PCIe 均衡技术介绍(逻辑物理篇)
|
固态存储 内存技术
SSD可靠性分析前传之NAND闪存可靠性概览
按照剧情发展的规律,在进入正片之前都会有前传来交代事件的背景,所以在介绍SSD可靠性之前,咱们也先来个前传哈。
|
存储 固态存储 算法
剖析QLC SSD硬件延迟的来源
不同的FW架构设计、FTL算法设计、NAND die plane/速率等的差异,都会直接影响SSD的性能与延迟,设计一块性能优越且稳定的SSD,是一项繁琐但具有很强艺术性的工程。
|
存储 固态存储 算法
多维度深入剖析QLC SSD硬件延迟的来源
不同的FW架构设计、FTL算法设计、NAND die plane/速率等的差异,都会直接影响SSD的性能与延迟,设计一块性能优越且稳定的SSD,是一项繁琐但具有很强艺术性的工程。