一文搞懂Go语言并发【goroutine】

简介: 一文搞懂Go语言并发【goroutine】

文章目录



前言


介绍Go语言并发底层原理,以及对比Go语言并发与其他语言并发的优劣



一、基本概念


并发、并行区分


1.概念


  并发:同一时间段内一个对象执行多个任务,充分利用时间
  并行:同一时刻,多个对象执行多个任务


2.图解


类似于超市柜台结账,并行是多个柜台结多个队列,在计算机中是多核cpu处理多个go语言开启的线程,并发是一个柜台结账多个队列,在计算机中就是单核cpu处理多个任务,抢夺时间片.

92da2a04b4c24a2d86b76175955c947c.png

②从用户态线程,内核态线程阐述go与java并发的优劣


1.用户态线程、内核态线程差异:


用户态:只能受限制的访问内存,且不允许访问外围设备,占用CPU资源可以被其他程序抢走。
内核态:CPU可以访问内存所有数据,包括外围设备,例如硬盘网卡等,cpu可以将自己从一个程序切换到另一个程序


2.java与go并发差异:


java:
  java没有规定具体使用什么线程,而是在不同形态的线程上进行切换,会耗费相当的资源
  go是用户态线程,资源耗费较少,一个线程的栈体默认为1M,并且需要运行在JVM上
go:
  go语言并发通过,goroutine实现,属于用户态的线程,可以根据需要创建成千上万个
  goroutine,每个goroutine占用内存大小会根据需要动态生成,典型的大小为2kB可
  以按需求放大到1GB,在go语言中一次可以轻松创建十万左右的goroutine,并且不
  依赖运行环境。


②高并发为什么是Go语言强项?


1.历史背景


  Go语言产生较晚,在其产生之前就已经有了多核cpu,所以设计者的理念就是将这门新的语言使用到
  多核cpu上支持更大数量级的并发


2.自身原因


  Go语言多并发底层实现使用的是协程,他占有更少的资源具有更快的执行速度,占用的资源还会根据
  任务量进行扩大或者缩小


③Go语言实现高并发底层GMP模型原理解析


1. G:


G是Goroutine的缩写,在这里就是Goroutine的控制结构,是对Goroutine的抽象。
其中包括执行的函数指令及参数;G保存的任务对象;线程上下文切换,现场保护
和现场恢复需要的寄存器(SP、IP)等信息。在 Go 语言中使用 runtime.g 结构表示。


2. M:


表示操作系统线程也可以称为内核线程,由操作系统调度以及管理,调度器最多可
以创建 10000 个线程,在 Go 语言中使用 runtime.m 结构表示。(用户线程与内核线程的映射关系)


3. P:


调度各个goroutine,使他们之间协调运行逻辑处理器,但不代表真正的CPU的数量,
真正决定并发程度的是P,初始化的时候一般会去读取GOMAXPROCS对应的值,如果没有显示设置,
则会读取默认值,在Go1.5之后GOMAXPROCS被默认设置可用的核数,而之前则默认为1,在 Go 语
言中使用 runtime.p 结构表示。


4.指定cpu线程个数


  通过runtime.GOMAXPROCS(),可以指定P的个数,如果没有指定则默认跑满整个cpu


二、上代码学会Go语言并发


①.开启一个简单的线程


  开启线程使用go+函数
  以下案例要认识到开启多线程使用函数闭包可能会出现的问题


1.使用匿名函数开启线程


//打印1-1000
  for i := 0; i < 1000; i++ {
    go func() {
      fmt.Println(i)
    }()
  }
//这里使用了函数闭包
/*
打印结果
  995
  995
  995
  996
  996
  999
  1000
  1000
*/


2.出问题的原理:


匿名函数进行操作时会将当前环境内的变量进行闭包,由于启动线程需要一定时间

在启动线程的时候i进行了改变所以打印的时候会有许多值相同


②.动态的关闭线程


1.为什么需要进行动态的关闭线程?


  在Go语言中如果不进行动态的关闭线程,那么有可能在子线程没有执行结束主线程就结束了,那样的话会有
  程序安全隐患,所以主线程不可以直接结束,应作为后盾,直到所有线程都结束了才可以结束。


2.使用waitGroup


  waitGroup有三个方法常用
    waitGroup.Add():使用wait计数器记1次数//将创建的线程数传进去
    waitGroup.Done():wait计数器减1(放在被开启线程的函数内)
    waitGroup.Wait():阻塞等待wait计数器值为零(放在主线程内)
    defer是在函数主体执行完的时候执行的代码(可理解为延时执行)


代码如下:


package main
import (
  "fmt"
  "math/rand"
  "sync"
  "time"
)
// 定义一个waitGroup结构体变量
var wg sync.WaitGroup
func f(i int) {
  // 等到函数执行完毕,会将waitGroup内的计数器减一
  defer wg.Done()
  rand.Seed(time.Now().UnixNano())
  time.Sleep(time.Duration(rand.Intn(3)) * time.Second)
  fmt.Println(i)
}
func main() {
  for i := 0; i < 100; i++ {
    // 开启一个线程就使用waitGroup记一次数
    wg.Add(1)
    go f(i)
  }
  // 阻塞等待waitGroup计数器为0
  wg.Wait()
  fmt.Println("hello")
}


总结


Go语言的高并发奠定了其未来在高级语言中的地位,越来越多的用户加入互联网需要一个支持高并发语言的支持,亿万级电商秒杀,亿万级游戏用户同时在线都离不开这样的语言,所以Go语言一直被游戏后端、web后端项目开发者青睐。

相关文章
|
4天前
|
监控 Linux PHP
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
【02】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-2月12日优雅草简化Centos stream8安装zabbix7教程-本搭建教程非docker搭建教程-优雅草solution
52 20
|
2天前
|
存储 监控 算法
探秘员工泄密行为防线:基于Go语言的布隆过滤器算法解析
在信息爆炸时代,员工泄密行为对企业构成重大威胁。本文聚焦布隆过滤器(Bloom Filter)这一高效数据结构,结合Go语言实现算法,帮助企业识别和预防泄密风险。通过构建正常操作“指纹库”,实时监测员工操作,快速筛查可疑行为。示例代码展示了如何利用布隆过滤器检测异常操作,并提出优化建议,如调整参数、结合日志分析系统等,全方位筑牢企业信息安全防线,守护核心竞争力。
|
10天前
|
Go C语言
Go语言入门:分支结构
本文介绍了Go语言中的条件语句,包括`if...else`、`if...else if`和`switch`结构,并通过多个练习详细解释了它们的用法。`if...else`用于简单的条件判断;`if...else if`处理多条件分支;`switch`则适用于基于不同值的选择逻辑。特别地,文章还介绍了`fallthrough`关键字,用于优化重复代码。通过实例如判断年龄、奇偶数、公交乘车及成绩等级等,帮助读者更好地理解和应用这些结构。
34 14
|
24天前
|
存储 监控 算法
内网监控系统之 Go 语言布隆过滤器算法深度剖析
在数字化时代,内网监控系统对企业和组织的信息安全至关重要。布隆过滤器(Bloom Filter)作为一种高效的数据结构,能够快速判断元素是否存在于集合中,适用于内网监控中的恶意IP和违规域名筛选。本文介绍其原理、优势及Go语言实现,提升系统性能与响应速度,保障信息安全。
28 5
|
1月前
|
算法 安全 Go
Go语言中的加密和解密是如何实现的?
Go语言通过标准库中的`crypto`包提供丰富的加密和解密功能,包括对称加密(如AES)、非对称加密(如RSA、ECDSA)及散列函数(如SHA256)。`encoding/base64`包则用于Base64编码与解码。开发者可根据需求选择合适的算法和密钥,使用这些包进行加密操作。示例代码展示了如何使用`crypto/aes`包实现对称加密。加密和解密操作涉及敏感数据处理,需格外注意安全性。
46 14
|
1月前
|
Go 数据库
Go语言中的包(package)是如何组织的?
在Go语言中,包是代码组织和管理的基本单元,用于集合相关函数、类型和变量,便于复用和维护。包通过目录结构、文件命名、初始化函数(`init`)及导出规则来管理命名空间和依赖关系。合理的包组织能提高代码的可读性、可维护性和可复用性,减少耦合度。例如,`stringutils`包提供字符串处理函数,主程序导入使用这些函数,使代码结构清晰易懂。
95 11
|
1月前
|
存储 安全 Go
Go语言中的map数据结构是如何实现的?
Go 语言中的 `map` 是基于哈希表实现的键值对数据结构,支持快速查找、插入和删除操作。其原理涉及哈希函数、桶(Bucket)、动态扩容和哈希冲突处理等关键机制,平均时间复杂度为 O(1)。为了确保线程安全,Go 提供了 `sync.Map` 类型,通过分段锁实现并发访问的安全性。示例代码展示了如何使用自定义结构体和切片模拟 `map` 功能,以及如何使用 `sync.Map` 进行线程安全的操作。
|
9天前
|
监控 关系型数据库 MySQL
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
【01】客户端服务端C语言-go语言-web端PHP语言整合内容发布-优雅草网络设备监控系统-硬件设备实时监控系统运营版发布-本产品基于企业级开源项目Zabbix深度二开-分步骤实现预计10篇合集-自营版
19 0
|
1月前
|
监控 安全 算法
深度剖析核心科技:Go 语言赋能局域网管理监控软件进阶之旅
在局域网管理监控中,跳表作为一种高效的数据结构,能显著提升流量索引和查询效率。基于Go语言的跳表实现,通过随机化索引层生成、插入和搜索功能,在高并发场景下展现卓越性能。跳表将查询时间复杂度优化至O(log n),助力实时监控异常流量,保障网络安全与稳定。示例代码展示了其在实际应用中的精妙之处。
44 9
|
2月前
|
算法 安全 Go
Go 语言中实现 RSA 加解密、签名验证算法
随着互联网的发展,安全需求日益增长。非对称加密算法RSA成为密码学中的重要代表。本文介绍如何使用Go语言和[forgoer/openssl](https://github.com/forgoer/openssl)库简化RSA加解密操作,包括秘钥生成、加解密及签名验证。该库还支持AES、DES等常用算法,安装简便,代码示例清晰易懂。
64 12