Pytorch 基于ResNet-18的服饰识别(使用Fashion-MNIST数据集)

简介: Pytorch 基于ResNet-18的服饰识别(使用Fashion-MNIST数据集)

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的博客
🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。
🥭本文内容:Pytorch 基于ResNet-18的服饰识别(使用Fashion-MNIST数据集)
更多内容请见👇

介绍

使用到的库:

  • Pytorch
  • matplotlib
  • d2l

d2l 为斯坦福大学李沐教授打包的一个库,其中包含一些深度学习中常用的函数方法。

安装:

pip install matplotlib
pip install d2l
Pytorch 环境请自行配置。

数据集:
Fashion-MNIST 是一个替代 MNIST 手写数字集的图像数据集。 它是由 Zalando(一家德国的时尚科技公司)旗下的研究部门提供。其涵盖了来自 10 种类别的共 7 万个不同商品的正面图片。
Fashion-MNIST 的大小、格式和训练集/测试集划分与原始的 MNIST 完全一致。60000/10000 的训练测试数据划分,28x28 的灰度图片。你可以直接用它来测试你的机器学习和深度学习算法性能,且不需要改动任何的代码。
Fashion-MNIST

下载地址:
本文使用 Pytorch 自动下载。

残差神经网络(ResNet) 是由微软研究院的 何恺明张祥雨任少卿孙剑 等人提出的。ResNet 在 2015 年的 ILSVRC(ImageNet Large Scale Visual Recognition Challenge)中取得了冠军。
残差神经网络 的主要贡献是发现了“退化现象(Degradation)”,并针对退化现象发明了 “快捷连接(Shortcut connection)”,极大的消除了深度过大的神经网络训练困难问题。神经网络的“深度”首次突破了 100 层、最大的神经网络甚至超过了 1000 层。

正常块(左)与残差块(右):
正常块与残差块

两种具体结构(包含以及不包含 1*1 卷积层的残差块):
包含以及不包含 1*1 卷积层的残差块

ResNet-18网络结构:
ResNet-18


1.导入相关库

import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from torchvision import datasets, transforms
import matplotlib.pyplot as plt
from d2l import torch as d2l

2.定义 ResNet-18 网络结构

class Residual(nn.Module):
    # 残差块
    def __init__(self, input_channels, num_channels,
                 use_1x1conv=False, strides=1):
        super().__init__()
        self.conv1 = nn.Conv2d(input_channels, num_channels,
                               kernel_size=3, padding=1, stride=strides)
        self.conv2 = nn.Conv2d(num_channels, num_channels,
                               kernel_size=3, padding=1)
        if use_1x1conv:
            self.conv3 = nn.Conv2d(input_channels, num_channels,
                                   kernel_size=1, stride=strides)
        else:
            self.conv3 = None
        self.bn1 = nn.BatchNorm2d(num_channels)
        self.bn2 = nn.BatchNorm2d(num_channels)

    def forward(self, X):
        Y = F.relu(self.bn1(self.conv1(X)))
        Y = self.bn2(self.conv2(Y))
        if self.conv3:
            X = self.conv3(X)
        Y += X
        return F.relu(Y)


# ResNet-18
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.BatchNorm2d(64), nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))


def resnet_block(input_channels, num_channels, num_residuals,
                 first_block=False):
    blk = []
    for i in range(num_residuals):
        if i == 0 and not first_block:
            blk.append(Residual(input_channels, num_channels,
                                use_1x1conv=True, strides=2))
        else:
            blk.append(Residual(num_channels, num_channels))
    return blk


b2 = nn.Sequential(*resnet_block(64, 64, 2, first_block=True))
b3 = nn.Sequential(*resnet_block(64, 128, 2))
b4 = nn.Sequential(*resnet_block(128, 256, 2))
b5 = nn.Sequential(*resnet_block(256, 512, 2))

net = nn.Sequential(b1, b2, b3, b4, b5,
                    nn.AdaptiveAvgPool2d((1, 1)),
                    nn.Flatten(), nn.Linear(512, 10))

3.下载并配置数据集和加载器

# 下载并配置数据集
trans = transforms.Compose(
    [transforms.Resize((96, 96)), transforms.ToTensor()])
train_dataset = datasets.FashionMNIST(root=r'E:\Deep Learning\dataset', train=True,
                                      transform=trans, download=True)
test_dataset = datasets.FashionMNIST(root=r'E:\Deep Learning\dataset', train=False,
                                     transform=trans, download=True)

# 配置数据加载器
batch_size = 64
train_loader = DataLoader(dataset=train_dataset,
                          batch_size=batch_size, shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
                         batch_size=batch_size, shuffle=True)

4.定义训练函数

训练完成后会保存模型,可以修改模型的保存路径。
def train(net, train_iter, test_iter, epochs, lr, device):
    def init_weights(m):
        if type(m) == nn.Linear or type(m) == nn.Conv2d:
            nn.init.xavier_uniform_(m.weight)
    net.apply(init_weights)
    print(f'Training on:[{device}]')
    net.to(device)
    optimizer = torch.optim.SGD(net.parameters(), lr=lr)
    loss = nn.CrossEntropyLoss()
    timer, num_batches = d2l.Timer(), len(train_iter)
    for epoch in range(epochs):
        # 训练损失之和,训练准确率之和,样本数
        metric = d2l.Accumulator(3)
        net.train()
        for i, (X, y) in enumerate(train_iter):
            timer.start()
            optimizer.zero_grad()
            X, y = X.to(device), y.to(device)
            y_hat = net(X)
            l = loss(y_hat, y)
            l.backward()
            optimizer.step()
            with torch.no_grad():
                metric.add(l * X.shape[0], d2l.accuracy(y_hat, y), X.shape[0])
            timer.stop()
            train_l = metric[0] / metric[2]
            train_acc = metric[1] / metric[2]
            if (i + 1) % (num_batches // 30) == 0 or i == num_batches - 1:
                print(f'Epoch: {epoch+1}, Step: {i+1}, Loss: {train_l:.4f}')
        test_acc = d2l.evaluate_accuracy_gpu(net, test_iter)
        print(
            f'Train Accuracy: {train_acc*100:.2f}%, Test Accuracy: {test_acc*100:.2f}%')
    print(f'{metric[2] * epochs / timer.sum():.1f} examples/sec '
          f'on: [{str(device)}]')
    torch.save(net.state_dict(),
               f"E:\\Deep Learning\\model\\ResNet-18_Fashion-MNIST_Epoch{epochs}_Accuracy{test_acc*100:.2f}%.pth")

5.训练模型(或加载模型)

如果环境正确配置了CUDA,则会由GPU进行训练。
加载模型需要根据自身情况修改路径。
epochs, lr = 10, 0.05
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
train(net, train_loader, test_loader, epochs, lr, device)
# 加载保存的模型
# net.load_state_dict(torch.load(r"E:\Deep Learning\model\ResNet-18_Fashion-MNIST_Epoch10_Accuracy92.00%.pth"))

6.可视化展示

def show_predict():
    # 预测结果图像可视化
    net.to(device)
    loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=True)
    plt.figure(figsize=(12, 8))
    name = ['T-shirt', 'Trouser', 'Pullover', 'Dress', 'Coat',
            'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot']
    for i in range(9):
        (images, labels) = next(iter(loader))
        images = images.to(device)
        labels = labels.to(device)
        outputs = net(images)
        _, predicted = torch.max(outputs.data, 1)
        title = f"Predicted: {name[int(predicted[0])]}, True: {name[int(labels[0])]}"
        plt.subplot(3, 3, i + 1)
        plt.imshow(images.cpu()[0].squeeze())
        plt.title(title)
        plt.xticks([])
        plt.yticks([])
    plt.show()


show_predict()

7.预测图

结果来自训练轮数 epochs=10,准确率 Accuracy=92.00%ResNet-18 模型:
预测图1
预测图2
预测图3
目录
相关文章
|
5月前
|
机器学习/深度学习 人工智能 PyTorch
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】31. 卷积神经网络之残差网络(ResNet)介绍及其Pytorch实现
【从零开始学习深度学习】31. 卷积神经网络之残差网络(ResNet)介绍及其Pytorch实现
|
2月前
|
并行计算 PyTorch 算法框架/工具
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
文章介绍了如何在CUDA 12.1、CUDNN 8.9和PyTorch 2.3.1环境下实现自定义数据集的训练,包括环境配置、预览结果和核心步骤,以及遇到问题的解决方法和参考链接。
117 4
基于CUDA12.1+CUDNN8.9+PYTORCH2.3.1,实现自定义数据集训练
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
【从零开始学习深度学习】38. Pytorch实战案例:梯度下降、随机梯度下降、小批量随机梯度下降3种优化算法对比【含数据集与源码】
|
5月前
|
机器学习/深度学习 自然语言处理 PyTorch
【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】
【从零开始学习深度学习】34. Pytorch-RNN项目实战:RNN创作歌词案例--使用周杰伦专辑歌词训练模型并创作歌曲【含数据集与源码】
|
5月前
|
机器学习/深度学习 资源调度 PyTorch
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
【从零开始学习深度学习】15. Pytorch实战Kaggle比赛:房价预测案例【含数据集与源码】
|
5月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
|
1月前
|
算法 PyTorch 算法框架/工具
Pytorch学习笔记(九):Pytorch模型的FLOPs、模型参数量等信息输出(torchstat、thop、ptflops、torchsummary)
本文介绍了如何使用torchstat、thop、ptflops和torchsummary等工具来计算Pytorch模型的FLOPs、模型参数量等信息。
175 2
|
1月前
|
机器学习/深度学习 自然语言处理 监控
利用 PyTorch Lightning 搭建一个文本分类模型
利用 PyTorch Lightning 搭建一个文本分类模型
57 8
利用 PyTorch Lightning 搭建一个文本分类模型
|
1月前
|
机器学习/深度学习 自然语言处理 数据建模
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
本文深入探讨了Transformer模型中的三种关键注意力机制:自注意力、交叉注意力和因果自注意力,这些机制是GPT-4、Llama等大型语言模型的核心。文章不仅讲解了理论概念,还通过Python和PyTorch从零开始实现这些机制,帮助读者深入理解其内部工作原理。自注意力机制通过整合上下文信息增强了输入嵌入,多头注意力则通过多个并行的注意力头捕捉不同类型的依赖关系。交叉注意力则允许模型在两个不同输入序列间传递信息,适用于机器翻译和图像描述等任务。因果自注意力确保模型在生成文本时仅考虑先前的上下文,适用于解码器风格的模型。通过本文的详细解析和代码实现,读者可以全面掌握这些机制的应用潜力。
58 3
三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力