Python sklearn实现SVM鸢尾花分类

简介: Python sklearn实现SVM鸢尾花分类

✅作者简介:人工智能专业本科在读,喜欢计算机与编程,写博客记录自己的学习历程。
🍎个人主页:小嗷犬的博客
🍊个人信条:为天地立心,为生民立命,为往圣继绝学,为万世开太平。
🥭本文内容:Python sklearn实现SVM鸢尾花分类
更多内容请见👇


准备

使用到的库:

  • numpy
  • matplotlib
  • sklearn

安装:

pip install numpy
pip install matplotlib
pip install sklearn
数据集:
使用开源数据集“鸢尾花数据集”。包含3种类型数据集,共150条数据;数据包含4项特征,花萼长度、花萼宽度、花瓣长度、花瓣宽度;将80%的数据划分为训练集,20%划分为测试集。

下载地址:
https://download.csdn.net/download/qq_63585949/86827472

对于SVM,存在一个分类面,两个点集到此平面的最小距离最大,两个点集中的边缘点到此平面的距离最大。
SVM鸢尾花分类


1.加载相关包

import numpy as np
from matplotlib import colors
from sklearn import svm
from sklearn import model_selection
import matplotlib.pyplot as plt
import matplotlib as mpl

2.加载数据、切分数据集

# ======将字符串转化为整形==============
def iris_type(s):
    it = {b'Iris-setosa': 0, b'Iris-versicolor': 1, b'Iris-virginica': 2}
    return it[s]


# 1 数据准备
# 1.1 加载数据
root = r'C:\Users\Marquis\Desktop\iris.data'  # 数据文件路径(需要根据自己数据集的位置修改)
data = np.loadtxt(root,
                  dtype=float,    # 数据类型
                  delimiter=',',  # 数据分割符
                  converters={4: iris_type})  # 将第五列使用函数iris_type进行转换
# 1.2 数据分割
x, y = np.split(data, (4, ), axis=1)  # 数据分组 第五列开始往后为y 代表纵向分割按列分割
x = x[:, :2]
x_train, x_test, y_train, y_test = model_selection.train_test_split(
    x, y, random_state=1, test_size=0.2)

3.构建SVM分类器,训练函数

# SVM分类器构建
def classifier():
    clf = svm.SVC(C=0.8,                         # 误差项惩罚系数
                  kernel='linear',               # 线性核 高斯核 rbf
                  decision_function_shape='ovr')  # 决策函数
    return clf

# 训练模型
def train(clf, x_train, y_train):
    clf.fit(x_train, y_train.ravel())  # 训练集特征向量和 训练集目标值

4.初始化分类器实例,训练模型

# 2 定义模型 SVM模型定义
clf = classifier()
# 3 训练模型
train(clf, x_train, y_train)

5.展示训练结果及验证结果

def show_accuracy(a, b, tip):
    acc = a.ravel() == b.ravel()
    print('%s Accuracy:%.3f' % (tip, np.mean(acc)))

# 分别打印训练集和测试集的准确率 score(x_train, y_train)表示输出 x_train,y_train在模型上的准确率


def print_accuracy(clf, x_train, y_train, x_test, y_test):
    print('training prediction:%.3f' % (clf.score(x_train, y_train)))
    print('test data prediction:%.3f' % (clf.score(x_test, y_test)))
    # 原始结果和预测结果进行对比 predict() 表示对x_train样本进行预测,返回样本类别
    show_accuracy(clf.predict(x_train), y_train, 'traing data')
    show_accuracy(clf.predict(x_test), y_test, 'testing data')
    # 计算决策函数的值 表示x到各个分割平面的距离
    print('decision_function:\n', clf.decision_function(x_train))


def draw(clf, x):
    iris_feature = 'sepal length', 'sepal width', 'petal length', 'petal width'
    # 开始画图
    x1_min, x1_max = x[:, 0].min(), x[:, 0].max()
    x2_min, x2_max = x[:, 1].min(), x[:, 1].max()
    # 生成网格采样点
    x1, x2 = np.mgrid[x1_min:x1_max:200j, x2_min:x2_max:200j]
    # 测试点
    grid_test = np.stack((x1.flat, x2.flat), axis=1)
    print('grid_test:\n', grid_test)
    # 输出样本到决策面的距离
    z = clf.decision_function(grid_test)
    print('the distance to decision plane:\n', z)
    grid_hat = clf.predict(grid_test)
    # 预测分类值 得到[0, 0, ..., 2, 2]
    print('grid_hat:\n', grid_hat)
    # 使得grid_hat 和 x1 形状一致
    grid_hat = grid_hat.reshape(x1.shape)
    cm_light = mpl.colors.ListedColormap(['#A0FFA0', '#FFA0A0', '#A0A0FF'])
    cm_dark = mpl.colors.ListedColormap(['g', 'b', 'r'])

    plt.pcolormesh(x1, x2, grid_hat, cmap=cm_light)
    plt.scatter(x[:, 0], x[:, 1], c=np.squeeze(y),
                edgecolor='k', s=50, cmap=cm_dark)
    plt.scatter(x_test[:, 0], x_test[:, 1], s=120, facecolor='none', zorder=10)
    plt.xlabel(iris_feature[0], fontsize=20)
    plt.ylabel(iris_feature[1], fontsize=20)
    plt.xlim(x1_min, x1_max)
    plt.ylim(x2_min, x2_max)
    plt.title('Iris data classification via SVM', fontsize=30)
    plt.grid()
    plt.show()


# 4 模型评估
print('-------- eval ----------')
print_accuracy(clf, x_train, y_train, x_test, y_test)
# 5 模型使用
print('-------- show ----------')
draw(clf, x)

6.预览图

SVM鸢尾花分类

目录
相关文章
|
2月前
|
Python
Python办公自动化:xlwings对Excel进行分类汇总
Python办公自动化:xlwings对Excel进行分类汇总
78 1
|
9天前
|
机器学习/深度学习 TensorFlow 算法框架/工具
利用Python和TensorFlow构建简单神经网络进行图像分类
利用Python和TensorFlow构建简单神经网络进行图像分类
29 3
|
9天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
28 1
|
2月前
|
机器学习/深度学习 算法 数据可视化
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
特征工程是机器学习流程中的关键步骤,通过将原始数据转换为更具意义的特征,增强模型对数据关系的理解能力。本文重点介绍处理数值变量的高级特征工程技术,包括归一化、多项式特征、FunctionTransformer、KBinsDiscretizer、对数变换、PowerTransformer、QuantileTransformer和PCA,旨在提升模型性能。这些技术能够揭示数据中的潜在模式、优化变量表示,并应对数据分布和内在特性带来的挑战,从而提高模型的稳健性和泛化能力。每种技术都有其独特优势,适用于不同类型的数据和问题。通过实验和验证选择最适合的变换方法至关重要。
46 5
8种数值变量的特征工程技术:利用Sklearn、Numpy和Python将数值转化为预测模型的有效特征
|
2月前
|
机器学习/深度学习 人工智能 算法
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
文本分类识别系统。本系统使用Python作为主要开发语言,首先收集了10种中文文本数据集("体育类", "财经类", "房产类", "家居类", "教育类", "科技类", "时尚类", "时政类", "游戏类", "娱乐类"),然后基于TensorFlow搭建CNN卷积神经网络算法模型。通过对数据集进行多轮迭代训练,最后得到一个识别精度较高的模型,并保存为本地的h5格式。然后使用Django开发Web网页端操作界面,实现用户上传一段文本识别其所属的类别。
90 1
【新闻文本分类识别系统】Python+卷积神经网络算法+人工智能+深度学习+计算机毕设项目+Django网页界面平台
|
1月前
|
安全 Python
Python脚本实现IP按段分类
【10月更文挑战第04天】
26 7
|
1月前
|
存储 Python 容器
Python 对象有哪几种,我们可以从哪些角度进行分类呢?
Python 对象有哪几种,我们可以从哪些角度进行分类呢?
15 1
|
2月前
|
机器学习/深度学习 算法 数据挖掘
决策树算法大揭秘:Python让你秒懂分支逻辑,精准分类不再难
【9月更文挑战第12天】决策树算法作为机器学习领域的一颗明珠,凭借其直观易懂和强大的解释能力,在分类与回归任务中表现出色。相比传统统计方法,决策树通过简单的分支逻辑实现了数据的精准分类。本文将借助Python和scikit-learn库,以鸢尾花数据集为例,展示如何使用决策树进行分类,并探讨其优势与局限。通过构建一系列条件判断,决策树不仅模拟了人类决策过程,还确保了结果的可追溯性和可解释性。无论您是新手还是专家,都能轻松上手,享受机器学习的乐趣。
47 9
|
2月前
|
机器学习/深度学习 存储 人工智能
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
使用Python作为开发语言,基于文本数据集(一个积极的xls文本格式和一个消极的xls文本格式文件),使用Word2vec对文本进行处理。通过支持向量机SVM算法训练情绪分类模型。实现对文本消极情感和文本积极情感的识别。并基于Django框架开发网页平台实现对用户的可视化操作和数据存储。
50 0
文本情感识别分析系统Python+SVM分类算法+机器学习人工智能+计算机毕业设计
|
3月前
|
数据采集 机器学习/深度学习 算法
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】
【python】python客户信息审计风险决策树算法分类预测(源码+数据集+论文)【独一无二】