深度学习:维度灾难

简介: 深度学习:维度灾难

深度学习:维度灾难

维度灾难的几何意义

在这里插入图片描述
假设有一个正方形,边长为1,那么面积为1 * 1。
正方形的内接圆的边长为0.5,面积为: pai r r。
假设一个正方体,边长为1,那么它的体积为 1 1 1。
正方体的内接球的半径为 3/4 pai r r r
按照这个规律,我们把维度拓展的 正方形为2维,正方体为3维,按照这个规律,我们把维度拓展到 n维。
此时 n维度 几何体的体积 就是n个1相乘,结果还是1.
然后 n维度 几何球体的体积就截然不同,设常数为K,体积则是:
$$K*r^n$$
因为r是小1的,所以几何球体当维度拓展到n维后,它的体积会逐渐趋近于0.

在这里我们来讨论一下如何理解体积,假设我们一个球体的体积=5,它们的总质量m是不会随着维度的升高而变化的,我们就说这个球体每单位体积中有5个数据。

当维度升高时,r=0.5,所以当维度达到足够高时,内接球体的体积会接近于0,也就是说球体的没单位体积内机会就没有数据,然而外接正方体的体积始终=1,也就是球内的数据随着维度的增加没有消失,都聚集在正方体的表面。这个定理源于各点距单位球中心距离的中间值计算公式:
在这里插入图片描述
这种情况下,一些度量相异性的距离指标(如:欧式距离)效果会大大折扣,从而导致一些基于这些指标的分类器在高维度的时候表现不好。
在这里插入图片描述
在此时,我们计算每个点

补充说明 (r 如果大于1)

我们在很多文章中可能都会看到这个例子,但是你有没有思考过,如果r>1,那么无论他的体积增大多少维度,他也不会缩小了,上面的那个理论不久作废了吗?
这里我给出两个解释:

  1. 我们平时做machine learning 项目的时候,一般数据都是会做归一化的,所以会控制在1以内。
  2. 假设r=2,那么正方体边长就是4,我们把维度升高的10维,高纬正方体的体积就是10个4相乘=4194304,而内接球体则是一个常数K乘10个2相乘,也就是2048 * K,它们在3维的体积相差不大,随着维度的升高,它们差距在不断增大,也可近似相对认为几何球体内没有数据。

维度灾难于过拟合的关系

假设在地球上有无数只猫和狗,但由于种种原因,我们总共只有10张描述猫狗的图片。我们的最终目的是利用这10张图片训练出一个很牛的分类器,它能准确的识别我们没见过的各种无数的猫、狗。
我们首先用一维特征(比如体重):
在这里插入图片描述
从图中我们可以在坐标轴中找到一个点来作为分类的基准点,左边是狗,右边是猫。但是我们发现这样的分类效果并不好,于是我们在增加1个特征(身高):
在这里插入图片描述
在这里我们也并不能找到一个很好的分隔线把他们分开,于是把特征拓展到三维:
在这里插入图片描述
到了现在,就可以找到一个很好的平面把他们分开。
那么是不是我们就可以按照这个规律不断提升特征的维度呢,分类的效果就会越来越好呢?
结果显然是不可行的,在维度提升的同时,很容易就可以找到一个看似完美的超平面来分割数据:

在这里插入图片描述

但是数据量要随着维度的增加而增加,数据本身就是有噪声的,在数据不足的时候,结果就是分类器学习到了很多数据集中的特例,因此对于现实数据往往会效果较差,因为现实数据是没有这些噪声以及异常特性的。就像上图,把分类结果映射到底维,这种现象也就是我们熟知的过拟合

缓解方法

  1. 增加数据
  2. L1\L2正则
  3. DropOut
  4. 降维
目录
相关文章
|
机器学习/深度学习 数据采集 算法
基于Pytorch之深度学习模型数据类型和维度转换个人总结
基于Pytorch之深度学习模型数据类型和维度转换个人总结
301 0
基于Pytorch之深度学习模型数据类型和维度转换个人总结
|
7天前
|
机器学习/深度学习 自然语言处理
深度学习在自然语言处理中的应用与挑战
【8月更文挑战第12天】本文将探讨深度学习技术在自然语言处理领域的应用及其所面临的挑战。我们将从深度学习的基本原理出发,逐步深入到其在文本分类、机器翻译、情感分析等NLP任务中的实际运用,并讨论当前技术的局限性和未来可能的发展方向。
17 0
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的自适应神经网络:原理与应用
【8月更文挑战第14天】在深度学习领域,自适应神经网络作为一种新兴技术,正逐渐改变我们处理数据和解决问题的方式。这种网络通过动态调整其结构和参数来适应输入数据的分布和特征,从而在无需人工干预的情况下实现最优性能。本文将深入探讨自适应神经网络的工作原理、关键技术及其在多个领域的实际应用,旨在为读者提供一个全面的视角,理解这一技术如何推动深度学习向更高效、更智能的方向发展。
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】Python之人工智能应用篇——音频生成技术
音频生成是指根据所输入的数据合成对应的声音波形的过程,主要包括根据文本合成语音(text-to-speech)、进行不同语言之间的语音转换、根据视觉内容(图像或视频)进行语音描述,以及生成旋律、音乐等。它涵盖了声音结构中的音素、音节、音位、语素等基本单位的预测和组合,通过频谱逼近或波形逼近的合成策略来实现音频的生成。 音频生成技术的发展主要依赖于深度学习模型,如循环神经网络(RNN)、长短时记忆网络(LSTM)、Transformer等。这些模型通过学习大量的音频数据,能够自动生成与人类发音相似甚至超越人类水平的音频内容。近年来,随着大规模预训练模型的流行,如GPT系列模型、BERT、T5等,
12 7
【深度学习】Python之人工智能应用篇——音频生成技术
|
1天前
|
机器学习/深度学习 人工智能 算法
【深度学习】python之人工智能应用篇——图像生成技术(二)
图像生成是计算机视觉和计算机图形学领域的一个重要研究方向,它指的是通过计算机算法和技术生成或合成图像的过程。随着深度学习、生成模型等技术的发展,图像生成领域取得了显著的进步,并在多个应用场景中发挥着重要作用。
15 9
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】深度学习的概述及应用,附带代码示例
深度学习(Deep Learning,简称DL)是机器学习领域中的一个重要分支,其目标是通过模拟人脑神经网络的工作机制,构建多层次的抽象特征表示,使机器能够自动从原始数据中提取关键信息,从而实现高精度的任务执行。深度学习通过多层神经网络结构及其训练方式,实现了从低级像素级别到高级概念级别的递进式知识层次。 深度学习的主要组件包括输入层、隐藏层和输出层。隐藏层的数量和层数决定了模型的复杂度和表达能力。在训练过程中,权重更新和梯度下降法是关键步骤,目的是最小化损失函数,提高预测精度。深度学习主要基于反向传播算法(BP Algorithm)来优化模型参数,通过正向传播、损失计算、反向传播和梯度下降等
19 8
|
2天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】探讨最新的深度学习算法、模型创新以及在图像识别、自然语言处理等领域的应用进展
深度学习作为人工智能领域的重要分支,近年来在算法、模型以及应用领域都取得了显著的进展。以下将探讨最新的深度学习算法与模型创新,以及它们在图像识别、自然语言处理(NLP)等领域的应用进展。
12 6
|
1天前
|
机器学习/深度学习 监控 量子技术
深度学习在图像识别中的应用与挑战
【8月更文挑战第18天】 本文将探讨深度学习技术如何革新了图像识别领域,并讨论在这一过程中遇到的挑战。我们将从基础概念出发,逐步深入到高级应用,最后分析当前技术的局限性和未来的发展方向。通过这篇文章,读者将获得对深度学习在图像识别中作用的全面理解,以及它如何影响我们的日常生活和未来技术的趋势。
9 4
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
【深度学习】python之人工智能应用篇——视频生成技术
视频生成技术是一种基于深度学习和机器学习的先进技术,它使得计算机能够根据给定的文本、图像、视频等单模态或多模态数据,自动生成符合描述的、高保真的视频内容。这种技术主要依赖于深度学习模型,如生成对抗网络(GAN)、自回归模型(Auto-regressive Model)、扩散模型(Diffusion Model)等。其中,GAN由两个神经网络组成:一个生成器用于生成逼真的图像或视频,另一个判别器用于判断生成的图像或视频是否真实。通过不断的对抗学习,生成器和判别器共同优化,以产生更高质量的视频。
9 2

热门文章

最新文章