使用Flink 读取kafka Catalog 源表数据展开json写入下游hologres表示例操作

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
实时数仓Hologres,5000CU*H 100GB 3个月
简介: 本文主要介绍如何使用Flink 读取kafka Catalog 源表数据写入下游hologres存储,并演示'json.infer-schema.flatten-nested-columns.enable参数,递归的展开JSON中的嵌套列的效果。

本文主要介绍如何使用Flink  读取kafka Catalog 源表数据写入下游hologres存储,并演示'json.infer-schema.flatten-nested-columns.enable参数,递归的展开JSON中的嵌套列的效果。


一 准备工作

本文测试使用 阿里云消息队列Kafka版进行演示,依据Flink集群的网络环境(VPC),构建相关上下游数据源,并做好白明单访问策略配置,保证网络链路可连通。


1 创建消息队列Kafka资源

需要注意的是,测试使用的kafka的vpc id和flink的vpc保持一致,不一致的话后续需要网络侧去打通网络,不然会报错网络会连接不上。


创建topic:


创建group:


2 创建 holo catalog

(参考https://help.aliyun.com/document_detail/290056.html


3 编写作业

 创建flinksql作业

CREATE TEMPORARY TABLE kafkaTable (
  `offset` INT NOT NULL METADATA,
  `part` BIGINT NOT NULL METADATA FROM 'partition',
  PRIMARY KEY (`part`, `offset`) NOT ENFORCED
) WITH (
  'connector' = 'kafka',
  'properties.bootstrap.servers' = 'servers:9092',  -- 在kafka接入点获取
  'topic' = 'dry_test',
  'scan.startup.mode' = 'latest-offset',
  'properties.group.id' = 'dry_group',
  'format' = 'json',
  'json.infer-schema.flatten-nested-columns.enable' = 'true'      -- 可选,将嵌套列全部展开,本文主要展示该字段的用法。
);
CREATE TABLE IF NOT EXISTS holodrytest.dry_db1.`dry_test3`
WITH (
  'connector' = 'hologres',
  'createparttable'='true'
) AS TABLE vvp.`default`.kafkaTable;


二 运行演示

1  启动作业

将flinksql作业上线并启动,Flink全托管控制台-作业运维,查看作业,作业正常运行


2  上游数据为非标准的嵌套json

进入kafka控制台,制造生产如下的测试数据

{"appid":"20221020","data":"{\"#account_id\":1111,\"user_name\":\"test111\",\"level\":80},\"debug\":1}"}

到目标hologres表查看表数据,发现data中是和json解析的一样的2个字段:


3  上游数据为标准的嵌套json

在kafka控制台,制造生产如下的测试数据

{"appid":"20221020","data":{"#account_id":1111,"user_name":"test111","level":80},"debug":1}


到目标hologres表查看表数据,发现结果表中把json中嵌套的字段全都解析成了独立的字段存表:


三 总结拓展

本文主要测试 'json.infer-schema.flatten-nested-columns.enable' = 'true'的用法

schema.flatten-nested-columns.enable

是否递归式地展开JSON中的嵌套列。

Boolean

参数取值如下:

  • true:递归式展开。对于被展开的列,Flink使用索引该值的路径作为名字。例如,对于JSON{"nested": {"col": true}}中的列col,它展开后的名字为nested.col。
  • false(默认值):将嵌套类型当作String处理。

说明该参数仅在Kafka作为CTAS数据同步的数据源时生效。

如上查看结果可以得知,当插入kafka的数据为标准的json格式的时候,是会根据嵌入的数据递归的展开,生成对应的字段。


如果业务侧不想要把所有字段递归展开,也可以使在DDL中CTAS语法中添加计算列 `rowkey` AS JSON_VALUE(`properties`, `$.rowkey`),来指定要展开的列。

相关文章
|
1月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
144 0
|
29天前
|
数据采集 JSON 数据处理
抓取和分析JSON数据:使用Python构建数据处理管道
在大数据时代,电商网站如亚马逊、京东等成为数据采集的重要来源。本文介绍如何使用Python结合代理IP、多线程等技术,高效、隐秘地抓取并处理电商网站的JSON数据。通过爬虫代理服务,模拟真实用户行为,提升抓取效率和稳定性。示例代码展示了如何抓取亚马逊商品信息并进行解析。
抓取和分析JSON数据:使用Python构建数据处理管道
|
15天前
|
JSON 数据格式 索引
Python中序列化/反序列化JSON格式的数据
【11月更文挑战第4天】本文介绍了 Python 中使用 `json` 模块进行序列化和反序列化的操作。序列化是指将 Python 对象(如字典、列表)转换为 JSON 字符串,主要使用 `json.dumps` 方法。示例包括基本的字典和列表序列化,以及自定义类的序列化。反序列化则是将 JSON 字符串转换回 Python 对象,使用 `json.loads` 方法。文中还提供了具体的代码示例,展示了如何处理不同类型的 Python 对象。
|
19天前
|
JSON 缓存 前端开发
PHP如何高效地处理JSON数据:从编码到解码
在现代Web开发中,JSON已成为数据交换的标准格式。本文探讨了PHP如何高效处理JSON数据,包括编码和解码的过程。通过简化数据结构、使用优化选项、缓存机制及合理设置解码参数等方法,可以显著提升JSON处理的性能,确保系统快速稳定运行。
|
12天前
|
JSON API 数据安全/隐私保护
拍立淘按图搜索API接口返回数据的JSON格式示例
拍立淘按图搜索API接口允许用户通过上传图片来搜索相似的商品,该接口返回的通常是一个JSON格式的响应,其中包含了与上传图片相似的商品信息。以下是一个基于淘宝平台的拍立淘按图搜索API接口返回数据的JSON格式示例,同时提供对其关键字段的解释
|
1月前
|
JSON JavaScript Java
在Java中处理JSON数据:Jackson与Gson库比较
本文介绍了JSON数据交换格式及其在Java中的应用,重点探讨了两个强大的JSON处理库——Jackson和Gson。文章详细讲解了Jackson库的核心功能,包括数据绑定、流式API和树模型,并通过示例演示了如何使用Jackson进行JSON解析和生成。最后,作者分享了一些实用的代码片段和使用技巧,帮助读者更好地理解和应用这些工具。
在Java中处理JSON数据:Jackson与Gson库比较
|
1月前
|
JSON API 数据格式
商品详情数据JSON格式示例参考(api接口)
JSON数据格式的商品详情数据通常包含商品的多个层级信息,以下是一个综合多个来源信息的JSON数据格式的商品详情数据示例参考:
|
1月前
|
存储 JSON 前端开发
JSON与现代Web开发:数据交互的最佳选择
JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也便于机器解析和生成。它以文本格式存储数据,常用于Web应用中的数据传输,尤其是在客户端和服务器之间。
49 0
|
1月前
|
存储 JavaScript 前端开发
TypeScript :使用mock提供数据&as const 的使用&tsconfig.json配置
本文介绍了如何在项目中使用 Mock 提供数据,包括安装依赖、配置 Vite 和 TypeScript,以及如何使用 `as const`、元组和 tsconfig.json 配置文件。通过这些配置,可以实现更灵活和高效的开发体验。
|
2月前
|
XML 存储 JSON
Twaver-HTML5基础学习(19)数据容器(2)_数据序列化_XML、Json
本文介绍了Twaver HTML5中的数据序列化,包括XML和JSON格式的序列化与反序列化方法。文章通过示例代码展示了如何将DataBox中的数据序列化为XML和JSON字符串,以及如何从这些字符串中反序列化数据,重建DataBox中的对象。此外,还提到了用户自定义属性的序列化注册方法。
47 1
下一篇
无影云桌面