ThreadLocal的使用及原理解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: JDK的lang包下提供了ThreadLocal类,我们可以使用它创建一个线程变量,线程变量的作用域仅在于此线程内

基本使用

JDK的lang包下提供了ThreadLocal类,我们可以使用它创建一个线程变量,线程变量的作用域仅在于此线程内。
用2个示例来展示一下ThreadLocal的用法。

示例一:

ThreadLocal<Integer> threadLocal = new ThreadLocal<>();

System.out.println(threadLocal.get());
threadLocal.set(1);
System.out.println(threadLocal.get());
threadLocal.remove();
System.out.println(threadLocal.get());

输出:

null
1
null

这个示例展示了ThreadLocal提供的所有方法,ThreadLocal中提供了三个方法,分别是:

  • get:获取变量值
  • set:设置变量值
  • remove:删除变量值

示例二:

//    创建一个MyRun类
class MyRun implements Runnable {

    //    创建2个线程变量,var1、var2
    private ThreadLocal<Integer> var1 = new ThreadLocal<>();
    private ThreadLocal<String> var2 = new ThreadLocal<>();

    @Override
    public void run() {
        //    循环调用m方法5次
        for (int i = 0; i < 5; i++) {
            m();
        }
    }

    public void m() {
        //    当前线程名称
        String name = Thread.currentThread().getName();

        //    var1变量从1开始,m每次调用递增1
        Integer v = var1.get();
        if(v == null) {
            var1.set(1);
        }else {
            var1.set(v + 1);
        }

        //    var2变量 = 线程名 - var1值
        var2.set(name + "-" + var1.get());

        //    打印
        print();
    }

    public void print() {
        String name = Thread.currentThread().getName();
        System.out.println(name + ", var1: " + var1.get() + ", var2: " + var2.get());
    }
}

创建2个线程,执行同一个MyRun:

MyRun myRun = new MyRun();
Thread t1 = new Thread(myRun);
Thread t2 = new Thread(myRun);
t1.start();
t2.start();

输出:

Thread-0, var1: 1, var2: Thread-0-1
Thread-1, var1: 1, var2: Thread-1-1
Thread-0, var1: 2, var2: Thread-0-2
Thread-1, var1: 2, var2: Thread-1-2
Thread-0, var1: 3, var2: Thread-0-3
Thread-1, var1: 3, var2: Thread-1-3
Thread-0, var1: 4, var2: Thread-0-4
Thread-0, var1: 5, var2: Thread-0-5
Thread-1, var1: 4, var2: Thread-1-4
Thread-1, var1: 5, var2: Thread-1-5

示例二展示了ThreadLocal的重要特点:
两个线程执行的是同一个MyRun对象,如果var1、var2是普通的成员变量,两个线程访问的将是同一个变量,这将会产生线程安全问题,然而从输出日志看来,t1、t2的var1、var2值其实是独立的,互不影响的。

这是因为var1、var2是ThreadLocal类型,即是线程变量,它是绑定在线程上的,哪个线程来访问这段代码,就从哪个线程上获取var1、var2变量值,线程与线程之间是相互隔离的,因此也不存在线程安全问题。

原理解析

ThreadLocal是如何实现这个效果的呢?
我们可以从ThreadLocal的源代码中一探究竟。

其中,最关键是get方法,我将get相关的源代码都提取出来如下:

public T get() {
    //    获取当前线程对象
    Thread t = Thread.currentThread();
    //    从当前线程中获取ThreadLocalMap对象
    ThreadLocalMap map = getMap(t);
    
    if (map != null) {
        //    从ThreadLocalMap对象中获取当前ThreadLocal对应Entry
        ThreadLocalMap.Entry e = map.getEntry(this);
        if (e != null) {
            //    若Entry不为null,返回值
            @SuppressWarnings("unchecked")
            T result = (T)e.value;
            return result;
        }
    }
    
    //    如果获取ThreadLocalMap对象为null则返回默认值
    return setInitialValue();
}

//    从指定线程对象获取ThreadLocalMap,也就是Thread中的threadLocals
ThreadLocalMap getMap(Thread t) {
    return t.threadLocals;
}

//    默认值
private T setInitialValue() {
    T value = initialValue();
    Thread t = Thread.currentThread();
    ThreadLocalMap map = getMap(t);
    
    if (map != null)
        map.set(this, value);//      如果当前线程的threadLocals不为null,则赋默认值
    else
        createMap(t, value);  //    如果当前线程的threadLocals为null,则新建
    return value;
}

void createMap(Thread t, T firstValue) {
    t.threadLocals = new ThreadLocalMap(this, firstValue);
}

protected T initialValue() {
    return null;  //  初始值是null
}

从以上这段代码可以看出,ThreadLocal访问的实际上是当前线程的成员变量threadLocals。
threadLocals的数据类型是ThreadLocalMap,这是JDK中专门为ThreadLocal设计的数据结构,它本质就是一个键值对类型。
ThreadLocalMap的键存储的是当前ThreadLocal对象,值是ThreadLocal对象实际存储的值。
当用ThreadLocal对象get方法时,它实际上是从当前线程的threadLocals获取键为当前ThreadLocal对象所对应的值。

画张图来辅助一下理解:

清楚了ThreadLocal的get原理,set和remove方法不需要看源码也能猜出是怎么写的。
无非是以ThreadLocal对象为键设置其值或删除键值对。

ThreadLocal的初始值

上面的介绍,我们看到ThreadLocal的initialValue方法永远都是返回null的:

protected T initialValue() {
    return null;  //  初始值是null
}

如果想要设定ThreadLocal对象的初始值,可以用以下方法:

ThreadLocal<Integer> threadLocal = ThreadLocal.withInitial(()->1);
System.out.println(threadLocal.get());

withInitial方法内实际返回的是一个ThreadLocal子类SuppliedThreadLocal对象。
SuppliedThreadLocal重写了ThreadLocal的initialValue方法。

static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {

    private final Supplier<? extends T> supplier;

    SuppliedThreadLocal(Supplier<? extends T> supplier) {
        this.supplier = Objects.requireNonNull(supplier);
    }

    @Override
    protected T initialValue() {
        return supplier.get();
    }
}

获取父线程的ThreadLocal变量

在一些场景下,我们可能需要子线程能获取到父线程的ThreadLocal变量,但使用ThreadLocal是无法获取到的:

public static ThreadLocal<Integer> threadLocal = new ThreadLocal<>();

public static void main(String[] args) {
    threadLocal.set(1);
    System.out.println(threadLocal.get());

    Thread childThread = new Thread(() -> System.out.println(threadLocal.get()));
    childThread.start();
}

输出:

1
null

使用ThreadLocal的子类InheritableThreadLocal可以达到这个效果:

public static ThreadLocal<Integer> threadLocal = new InheritableThreadLocal<>();

public static void main(String[] args) {
    threadLocal.set(1);
    System.out.println(threadLocal.get());

    Thread childThread = new Thread(() -> System.out.println(threadLocal.get()));
    childThread.start();
}
1
1

InheritableThreadLocal是怎么做到的呢?

我们来分析一下InheritableThreadLocal的源代码。

public class InheritableThreadLocal<T> extends ThreadLocal<T> {
    
    protected T childValue(T parentValue) {
        return parentValue;
    }

    ThreadLocalMap getMap(Thread t) {
       return t.inheritableThreadLocals;
    }

    void createMap(Thread t, T firstValue) {
        t.inheritableThreadLocals = new ThreadLocalMap(this, firstValue);
    }
}

InheritableThreadLocal的源代码并不多,主要是覆盖了ThreadLocal的三个方法childValue、getMap、createMap。
childValue方法用于ThreadLocalMap内部使用,我们不打算讲解ThreadLocalMap内部设计,这里可以忽略;
ThreadLocal本来getMap、createMap读写的是当前Thread对象的threadLocals变量。
而InheritableThreadLocal将其改为了读写当前Thread对象的InheritableThreadLocal变量。

接着我们要从Thread类的源码查找头绪。

Thread类源代码中,我们可以看到有这么2个成员变量:

ThreadLocal.ThreadLocalMap threadLocals = null;

ThreadLocal.ThreadLocalMap inheritableThreadLocals = null;

如果是使用ThreadLocal创建线程变量,读写的是Thread对象的threadLocals;
如果是使用InheritableThreadLocal创建线程变量,读写的是Thread对象的inheritableThreadLocals。

在Thread类的init方法可以看到(Thread所有构造方法都是调用init方法,这边仅贴出关键部分):

if (parent.inheritableThreadLocals != null)
            this.inheritableThreadLocals =
                ThreadLocal.createInheritedMap(parent.inheritableThreadLocals);

ThreadLocal.createInheritedMap:

static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
    return new ThreadLocalMap(parentMap);
}

如果父级线程的inheritableThreadLocals不为null,那么将父级线程的inheritableThreadLocals赋值到当前线程的inheritableThreadLocals变量。

总结:当使用InheritableThreadLocal创建线程变量时,父线程读写线程变量实际是写入父线程的inheritableThreadLocals中,在创建子线程时,会将父线程的inheritableThreadLocals复制给子线程的inheritableThreadLocals,子线程操作此线程变量时,也是读写自己线程的inheritableThreadLocals,这就达到了子线程可以获取父线程ThreadLocal的效果。

其他要点

  • 如果使用了线程池,线程是会被复用的,因此线程的threadLocals和inheritableThreadLocals也会复用,在线程池使用ThreadLocal可能会产生一些问题,需要留意;
  • JDK本身提供创建线程池的方法,是不支持获得父级线程的ThreadLocal变量的。
目录
相关文章
|
3天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
16 3
|
19天前
|
编译器 C++ 开发者
【C++】深入解析C/C++内存管理:new与delete的使用及原理(三)
【C++】深入解析C/C++内存管理:new与delete的使用及原理
|
15天前
|
前端开发 Java 应用服务中间件
21张图解析Tomcat运行原理与架构全貌
【10月更文挑战第2天】本文通过21张图详细解析了Tomcat的运行原理与架构。Tomcat作为Java Web开发中最流行的Web服务器之一,其架构设计精妙。文章首先介绍了Tomcat的基本组件:Connector(连接器)负责网络通信,Container(容器)处理业务逻辑。连接器内部包括EndPoint、Processor和Adapter等组件,分别处理通信、协议解析和请求封装。容器采用多级结构(Engine、Host、Context、Wrapper),并通过Mapper组件进行请求路由。文章还探讨了Tomcat的生命周期管理、启动与停止机制,并通过源码分析展示了请求处理流程。
|
12天前
|
开发框架 缓存 前端开发
electron-builder 解析:你了解其背后的构建原理吗?
本文首发于微信公众号“前端徐徐”,详细解析了 electron-builder 的工作原理。electron-builder 是一个专为整合前端项目与 Electron 应用的打包工具,负责管理依赖、生成配置文件及多平台构建。文章介绍了前端项目的构建流程、配置信息收集、依赖处理、asar 打包、附加资源准备、Electron 打包、代码签名、资源压缩、卸载程序生成、安装程序生成及最终安装包输出等环节。通过剖析 electron-builder 的原理,帮助开发者更好地理解和掌握跨端桌面应用的构建流程。
36 2
|
18天前
|
搜索推荐 Shell
解析排序算法:十大排序方法的工作原理与性能比较
解析排序算法:十大排序方法的工作原理与性能比较
37 9
|
5天前
|
前端开发 JavaScript UED
axios取消请求CancelToken的原理解析及用法示例
axios取消请求CancelToken的原理解析及用法示例
15 0
|
8天前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
37 0
|
13天前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
30 0
|
13天前
|
SQL 分布式计算 算法
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(二)
58 0
|
18天前
|
Java C语言 Python
解析Python中的全局解释器锁(GIL):影响、工作原理及解决方案
解析Python中的全局解释器锁(GIL):影响、工作原理及解决方案
26 0

推荐镜像

更多