季节优化算法(Seasons optimization algorithm,SOA)附matlab代码

简介: 季节优化算法(Seasons optimization algorithm,SOA)附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机

⛄ 内容介绍

This paper introduces a new stochastic bio-inspired optimization algorithm, denoted as seasons optimization (SO) algorithm.This algorithm is inspired by the growth cycle of trees in diferent seasons of a year. It is an iterative and population-based algorithm working with a population of initial solutions known as a forest. Each individual in the forest is referred to as a tree. Until the termination conditions are satisfed, the trees in the forest are updated to a new generation by applying four operators similar to the trees’ life cycles in nature: renew, competition, seeding, and resistance. These operators hopefully cause the trees to converge towards the global optimum of the optimization problem. The efectiveness of the proposed SO algorithm is evaluated using multi-variable single-objective test problems and compared with several well-known baseline and state-of-the-art algorithms. The results show that the proposed algorithm outperformed its counterparts in terms of solution quality and fnding the global optimum on most benchmark functions.

⛄ 部分代码

clear all;

clc;

close all

%% Problem Statement

ProblemParams.CostFuncName = 'F4';

objFunc= 'F4';

[fobj, lowerbound, upperbound, globalCost, dimension]=GetBenchmarkFunction(ProblemParams.CostFuncName);

ProblemParams.CostFuncName=fobj;

ProblemParams.lb=lowerbound;

ProblemParams.ub=upperbound;

ProblemParams.NPar = dimension;

ProblemParams.gcost=globalCost;


ProblemParams.VarMin =ProblemParams.lb;

ProblemParams.VarMax = ProblemParams.ub;


if numel(ProblemParams.VarMin)==1

   ProblemParams.VarMin=repmat(ProblemParams.VarMin,1,ProblemParams.NPar);

   ProblemParams.VarMax=repmat(ProblemParams.VarMax,1,ProblemParams.NPar);

end

ProblemParams.SearchSpaceSize = ProblemParams.VarMax - ProblemParams.VarMin;



AlgorithmParams.NumOfTrees = 8;

AlgorithmParams.NumOfYears = 50;

AlgorithmParams.Pmin = 0.4;

AlgorithmParams.Pmax = 0.6;


%% Main Loop


for year= 1:AlgorithmParams.NumOfYears

   

   p=AlgorithmParams.Pmax-(year/AlgorithmParams.NumOfYears)*(AlgorithmParams.Pmax-AlgorithmParams.Pmin);            %pr, ps and pw are in the range [0.4, 0.6]

   AlgorithmParams.RenewRate=p;

   AlgorithmParams.SeedingRate=p;

   AlgorithmParams.ColdThreshold=p;

   AlgorithmParams.CompetitionRate = p;

   

   

   %% Spring Season

   if (year==1)

       InitialTrees = CreateForest(AlgorithmParams, ProblemParams);

       Forest=InitialTrees;

       InitialCost = feval(ProblemParams.CostFuncName,InitialTrees);

       Forest(:,end+1) = InitialCost;

   else

       Forest = Renew(Forest, Seeds, AlgorithmParams, ProblemParams);

   end

   

   

   %% Summer Season  (Growth & Competition)

   [Forest] = Competition (Forest, AlgorithmParams, ProblemParams, year);

   

   %% Autumn Season

   Seeds = Seeding(Forest,AlgorithmParams, ProblemParams);

   s=size(Seeds,1);

   AlgorithmParams.s=s;

   

   %% Winter Season

   Forest = Resistance(Forest,AlgorithmParams, ProblemParams);

   

   Costs = Forest(:,end);

   MinimumCost(year) = min(Costs);

   

   fprintf('Minimum Cost in Iteration %d is %3.16f \n', year,MinimumCost(year));

   

end  

figure;

subplot(121)


func_plot(objFunc);

title(objFunc)

xlabel('x_1');

ylabel('x_2');

zlabel([objFunc,'( x_1 , x_2 )'])

subplot(122)

semilogy(MinimumCost,'LineWidth',3);

xlabel('Iterations');

ylabel('Best fitness obtained so far');

legend('SOA');

box on;

axis tight;

grid off;

⛄ 运行结果

⛄ 参考文献

Emami, Hojjat. “Seasons Optimization Algorithm.” Engineering with Computers, vol. 38, no. 2, Springer Science and Business Media LLC, Aug. 2020, pp. 1845–65, doi:10.1007/s00366-020-01133-5.

❤️ 关注我领取海量matlab电子书和数学建模资料
❤️部分理论引用网络文献,若有侵权联系博主删除


相关文章
|
1天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
4天前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
7天前
|
机器学习/深度学习 算法 数据挖掘
基于GWO灰狼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了基于分组卷积神经网络(GroupCNN)和灰狼优化(GWO)的时间序列回归预测算法。算法运行效果良好,无水印展示。使用Matlab2022a开发,提供完整代码及详细中文注释。GroupCNN通过分组卷积减少计算成本,GWO则优化超参数,提高预测性能。项目包含操作步骤视频,方便用户快速上手。
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化卷积神经网络(Bayes-CNN)的多因子数据分类识别算法matlab仿真
本项目展示了贝叶斯优化在CNN中的应用,包括优化过程、训练与识别效果对比,以及标准CNN的识别结果。使用Matlab2022a开发,提供完整代码及视频教程。贝叶斯优化通过构建代理模型指导超参数优化,显著提升模型性能,适用于复杂数据分类任务。
|
7天前
|
算法 决策智能
基于GA-PSO遗传粒子群混合优化算法的TSP问题求解matlab仿真
本文介绍了基于GA-PSO遗传粒子群混合优化算法解决旅行商问题(TSP)的方法。TSP旨在寻找访问一系列城市并返回起点的最短路径,属于NP难问题。文中详细阐述了遗传算法(GA)和粒子群优化算法(PSO)的基本原理及其在TSP中的应用,展示了如何通过编码、选择、交叉、变异及速度和位置更新等操作优化路径。算法在MATLAB2022a上实现,实验结果表明该方法能有效提高求解效率和解的质量。
|
17天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
12天前
|
算法
基于粒子群算法的分布式电源配电网重构优化matlab仿真
本研究利用粒子群算法(PSO)优化分布式电源配电网重构,通过Matlab仿真验证优化效果,对比重构前后的节点电压、网损、负荷均衡度、电压偏离及线路传输功率,并记录开关状态变化。PSO算法通过迭代更新粒子位置寻找最优解,旨在最小化网络损耗并提升供电可靠性。仿真结果显示优化后各项指标均有显著改善。
|
8天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
本项目展示了一种基于WOA优化的GroupCNN分组卷积网络时间序列预测算法。使用Matlab2022a开发,提供无水印运行效果预览及核心代码(含中文注释)。算法通过WOA优化网络结构与超参数,结合分组卷积技术,有效提升预测精度与效率。分组卷积减少了计算成本,而WOA则模拟鲸鱼捕食行为进行优化,适用于多种连续优化问题。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA遗传优化的GroupCNN分组卷积网络时间序列预测算法matlab仿真
该算法结合了遗传算法(GA)与分组卷积神经网络(GroupCNN),利用GA优化GroupCNN的网络结构和超参数,提升时间序列预测精度与效率。遗传算法通过模拟自然选择过程中的选择、交叉和变异操作寻找最优解;分组卷积则有效减少了计算成本和参数数量。本项目使用MATLAB2022A实现,并提供完整代码及视频教程。注意:展示图含水印,完整程序运行无水印。
|
10天前
|
机器学习/深度学习 算法 5G
基于BP神经网络的CoSaMP信道估计算法matlab性能仿真,对比LS,OMP,MOMP,CoSaMP
本文介绍了基于Matlab 2022a的几种信道估计算法仿真,包括LS、OMP、NOMP、CoSaMP及改进的BP神经网络CoSaMP算法。各算法针对毫米波MIMO信道进行了性能评估,通过对比不同信噪比下的均方误差(MSE),展示了各自的优势与局限性。其中,BP神经网络改进的CoSaMP算法在低信噪比条件下表现尤为突出,能够有效提高信道估计精度。
22 2

热门文章

最新文章