BNBDAO三三复制公排挖矿dapp系统开发技术详情(排序方案)

简介: BNBDAO三三复制公排挖矿dapp系统开发技术详情(排序方案)

快速排序的3个基本步骤:
从数组中选择一个元素作为基准点
排序数组,所有比基准值小的元素摆放在左边,而大于基准值的摆放在右边。每次分割结束以后基准值会插入到中间去。
最后利用递归,将摆放在左边的数组和右边的数组在进行一次上述的1和2操作。
为了更深入的理解,可以看下面这张图
image.png

我们根据上面这张图,来用文字描述一下
选择左右边的元素为基准数,7
将小于7的放在左边,大于7的放在右边,然后将基准数放到中间
然后再重复操作从左边的数组选择一个基准点2
3比2大则放到基准树的右边
右边的数组也是一样选择12作为基准数,15比12大所以放到了12的右边
最后出来的结果就是从左到右 2 ,3,7,12,15了
以上就是快速排序基本的一个实现思想。
快速排序实现方式一
这是我最近看到的一种快排代码
var quickSort = function(arr) {
if (arr.length <= 1) {

return arr;

}
var pivotIndex = Math.floor(arr.length / 2);
var pivot = arr.splice(pivotIndex, 1)[0];
var left = [];
var right = [];

for (var i = 0; i < arr.length; i++) {

if (arr[i] < pivot) {
  left.push(arr[i]);
} else {
  right.push(arr[i]);
}

}
return quickSort(left).concat([pivot], quickSort(right));
};
以上代码的实现方式是,选择一个中间的数字为基准点,用两个数组分别去保存比基准数小的值,和比基准数大的值,最后递归左边的数组和右边的数组,用concat去做一个数组的合并。
对于这段代码的分析:
缺点:
获取基准点使用了一个splice操作,在js中splice会对数组进行一次拷贝的操作,而它最坏的情况下复杂度为O(n),而O(n)代表着针对数组规模的大小进行了一次循环操作。
首先我们每次执行都会使用到两个数组空间,产生空间复杂度。
concat操作会对数组进行一次拷贝,而它的复杂度也会是O(n)
对大量数据的排序来说相对会比较慢
优点:
代码简单明了,可读性强,易于理解

image.png

下面是拆分的过程,其实就是对指针进行移动,找到最后指针所指向的位置
/**

  • @param {*} A 数组
  • @param {*} p 起始下标
  • @param {*} r 结束下标 + 1

*/
function dvide(A, p, r){

// 基准点
const pivot = A[r-1];

// i初始化是-1,也就是起始下标的前一个
let i = p - 1;

// 循环
for(let j = p; j < r-1; j++){
    // 如果比基准点小就i++,然后交换元素位置
    if(A[j] <= pivot){
        i++;
        swap(A, i, j);
    }
}
// 最后将基准点插入到i+1的位置
swap(A, i+1, r-1);
// 返回最终指针i的位置
return i+1;

}
主程序主要是通过递归去重复的调用进行拆分,一直拆分到只有一个数字。
/**

 * 
 * @param {*} A  数组
 * @param {*} p  起始下标
 * @param {*} r  结束下标 + 1
 */
function qsort(A, p, r){
    r = r || A.length;
    if(p < r - 1){
        const q = divide(A, p, r);
        qsort(A, p, q);
        qsort(A, q + 1, r);
    }
    return A;
}

完整代码
function swap(A, i, j) {
const t = A[i];
A[i] = A[j];
A[j] = t;
}

/**
*

  • @param {*} A 数组
  • @param {*} p 起始下标
  • @param {*} r 结束下标 + 1

*/
function divide(A, p, r) {
const x = A[r - 1];
let i = p - 1;

for (let j = p; j < r - 1; j++) {

if (A[j] <= x) {
  i++;
  swap(A, i, j);
}

}

swap(A, i + 1, r - 1);

return i + 1;
}

/**

  • @param {*} A 数组
  • @param {*} p 起始下标
  • @param {*} r 结束下标 + 1

*/
function qsort(A, p = 0, r) {
r = r || A.length;

if (p < r - 1) {

const q = divide(A, p, r);
qsort(A, p, q);
qsort(A, q + 1, r);

}

return A;
}

相关文章
dapp互助预约排单系统开发步骤指南/案例设计/规则详细/方案逻辑/源码程序
-Determine the core functions and objectives of the system, understand user needs and expectations.
|
安全 区块链 算法
dapp去中心化大小公排二二复制/三三复制系统开发指南功能丨需求方案丨案例设计丨成熟技术丨源码出售
区块链智能合约(Smart Contract)是一种在区块链技术中实现可编程逻辑的计算机代码。它们可以自动执行合约中包含的条件和操作,从而在区块链上创建一个不可篡改、安全和可靠的数字合约。
|
8月前
|
安全
dapp农场养成游戏系统开发规则详细/方案设计/步骤逻辑/源码案例
Developing a decentralized application (DApp) farm development game system based on blockchain technology requires considering various rules and implementation steps. The following are some detailed rules and guidelines for reference:
|
8月前
|
新零售 搜索推荐
三三复制公排滑落商城系统开发|详情方案
不能向客户提供高品质的购物体验,不能让顾客感受商品和服务,不能降低物流成本
|
8月前
|
前端开发 区块链
swap丨dapp智能合约只涨不跌项目系统开发成熟技术/案例设计/逻辑方案/源码指南
合约:import "@openzeppelin/contracts/utils/cryptography/MerkleProof.sol";
|
存储 开发框架 安全
dapp去中心化大小公排项目系统开发案例详情丨规则玩法丨需求逻辑丨方案项目丨源码程序
区块链技术的去中心化应用(DApp)开发在近年来逐渐受到广泛关注。大小公排互助系统是一种较为流行的DApp模式之一,其基本特点是参与者按照加入顺序依次排队,
|
安全 区块链 数据安全/隐私保护
dapp互助预约排单二二复制/三三复制大小公排项目系统开发稳定版/玩法详情/指南教程/规则方案/需求设计/案例源码
能合约在代码中加入了许多安全校验机制,比如对输入参数范围的检查、防止重入攻击的修复等。并且智能合约在运行过程中记录每一笔交易以及合约状态的变化,确保所有的交易和状态都是经过验证和授权的,不会受到篡改。
|
安全 前端开发 网络安全
DAPP三三复制公排系统开发详情模式|智能合约
  去中心化交易所系统的开发需要具备区块链开发、智能合约编程和前端开发等多种技能。在开发过程中需要注重市场需求和用户体验,同时要保证系统的安全性与性能稳定性。
|
存储 安全 区块链
DAPP三三复制系统开发(模式)|DAPP合约公排系统开发方案
我们并不能当然认为,所有的中心化系统就是可篡改的、不真实的
|
存储 安全 区块链
DAPP三三复制公排系统开发指南与逻辑(成熟技术)
跳出横向的角度来看待Web3.0的方式和方法,真正以一种全新的视角来看待它

热门文章

最新文章

下一篇
开通oss服务