云原生向量数据库Milvus(二)-数据与索引的处理流程、索引类型及Schema(下)

本文涉及的产品
阿里云百炼推荐规格 ADB PostgreSQL,4核16GB 100GB 1个月
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_高级版,每接口累计50万次
简介: 本文将介绍 Milvus 系统中数据写入、索引构建、数据查询的具体处理流程,同时,还会介绍Milvus支持的索引类型;另外,还将讲述如何定义字段和集合Schema。


距离计算公式

Milvus 基于不同的距离计算方式比较向量间的距离。根据插入数据的形式,选择合适的距离计算方式能极大地提高数据分类和聚类性能。

浮点型向量主要使用以下距离计算公式:

  • 欧氏距离 (L2): 主要运用于计算机视觉领域。
  • 内积 (IP): 主要运用于自然语言处理(NLP)领域。

二值型向量主要使用以下距离计算公式:

  • 汉明距离 (Hamming): 主要运用于自然语言处理(NLP)领域。
  • 杰卡德距离 (Jaccard): 主要运用于化学分子式检索领域。
  • 谷本距离 (Tanimoto): 主要运用于化学分子式检索领域。
  • 超结构 (Superstructure): 主要运用于检索化学分子式的相似超结构。
  • 子结构 (Substructure): 主要运用于检索化学分子式的相似子结构。


Milvus 目前支持的距离计算方式与数据格式、索引类型之间的兼容关系以下表格所示。

数据格式 距离计算方式 索引类型
浮点型向量 欧氏距离 (L2)
内积 (IP)
FLAT
IVF_FLAT
IVF_SQ8
IVF_PQ
HNSW
IVF_HNSW
RHNSW_FLAT
RHNSW_SQ
RHNSW_PQ
ANNOY
二值型向量 杰卡德距离 (Jaccard)
谷本距离 (Tanimoto)
汉明距离 (Hamming)
BIN_FLAT
BIN_IVF_FLA
二值型向量 超结构 (superstructure)
子结构 (substructure)
BIN_FLAT

Schema


字段Schema

字段Schema是字段的逻辑定义。 这是在定义集合Schema和创建集合之前需要去定义的。

注:Milvus 2.0 只支持一个集合中的一个主键字段。

字段 schema 属性

属性 描述 注释
name 集合中字段的名称 数据类型:String。必须的
dtype 字段的数据类型 必须的
description 字段的描述 数据类型: String。可选的
is_primary 是否将该字段设置为主键字段 数据类型: Boolean (true or false)。 主键字段为必填项
dim 向量的维数 数据类型: Integer ∈[1, 32768]。对于向量字段是必需的


创建一个字段 schema

from pymilvus import FieldSchema
# 主键
id_field = FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, description="primary id")
age_field = FieldSchema(name="age", dtype=DataType.INT64, description="age")
embedding_field = FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128, description="vector")
复制代码


字段支持的数据类型

DataType 定义字段包含的数据类型。 不同的字段支持不同的数据类型。

  • 主键字段支持的数据类型:
  • INT8: numpy.int8
  • INT16: numpy.int16
  • INT32: numpy.int32
  • INT64: numpy.int64
  • 标量字段支持的数据类型:
  • BOOL: Boolean (true or false)
  • INT8: numpy.int8
  • INT16: numpy.int16
  • INT32: numpy.int32
  • INT64: numpy.int64
  • FLOAT: numpy.float32
  • DOUBLE: numpy.double
  • 向量字段支持的数据类型:
  • BINARY_VECTOR: Binary vector
  • FLOAT_VECTOR: Float vector

集合 Schema


集合 schema 是 集合 的逻辑定义。通常你需要在定义 集合 schema 和创建集合之前定义字段 schema。

集合 schema 的属性

属性 描述 备注
field 要创建的 collection 中的 field 强制
description collection 描述 数据类型:String。 可选
auto_id 是否启用自动分配 ID (即 primary key) 数据类型:Boolean (truefalse)。 可选


创建一个集合 schema

先定义字段 schema,再定义集合 schema。

from pymilvus import FieldSchema, CollectionSchema
id_field = FieldSchema(name="id", dtype=DataType.INT64, is_primary=True, description="primary id")
age_field = FieldSchema(name="age", dtype=DataType.INT64, description="age")
embedding_field = FieldSchema(name="embedding", dtype=DataType.FLOAT_VECTOR, dim=128, description="vector")
schema = CollectionSchema(fields=[id_field, age_field, embedding_field], auto_id=False, description="desc of a collection")
复制代码



使用指定的 schema 创建集合:

from pymilvus import Collection
collection_name1 = "tutorial_1"
collection1 = Collection(name=collection_name1, schema=schema, using='default', shards_num=2)
复制代码


注意: 你可以使用 shards_num 参数定义分片编号,并通过在 using 中指定别名来定义您希望在哪个 Milvus 服务器中创建集合。

你也可以使用 Collection.construct_from_dataframe 自动从 DataFrame 生成一个 collection schema 并创建一个 collection。

import pandas as pd
df = pd.DataFrame({
        "id": [i for i in range(nb)],
        "age": [random.randint(20, 40) for i in range(nb)],
        "embedding": [[random.random() for _ in range(dim)] for _ in range(nb)]
    })
collection, ins_res = Collection.construct_from_dataframe(
                                'my_collection',
                                df,
                                primary_field='id',
                                auto_id=False
                                )


相关实践学习
阿里云百炼xAnalyticDB PostgreSQL构建AIGC应用
通过该实验体验在阿里云百炼中构建企业专属知识库构建及应用全流程。同时体验使用ADB-PG向量检索引擎提供专属安全存储,保障企业数据隐私安全。
AnalyticDB PostgreSQL 企业智能数据中台:一站式管理数据服务资产
企业在数据仓库之上可构建丰富的数据服务用以支持数据应用及业务场景;ADB PG推出全新企业智能数据平台,用以帮助用户一站式的管理企业数据服务资产,包括创建, 管理,探索, 监控等; 助力企业在现有平台之上快速构建起数据服务资产体系
相关文章
|
2月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
4月前
|
机器学习/深度学习 敏捷开发 存储
数据飞轮:激活数据中台的数据驱动引擎
数据飞轮:激活数据中台的数据驱动引擎
|
5天前
|
运维 监控 Cloud Native
云原生之运维监控实践:使用 taosKeeper 与 TDinsight 实现对 时序数据库TDengine 服务的监测告警
在数字化转型的过程中,监控与告警功能的优化对保障系统的稳定运行至关重要。本篇文章是“2024,我想和 TDengine 谈谈”征文活动的三等奖作品之一,详细介绍了如何利用 TDengine、taosKeeper 和 TDinsight 实现对 TDengine 服务的状态监控与告警功能。作者通过容器化安装 TDengine 和 Grafana,演示了如何配置 Grafana 数据源、导入 TDinsight 仪表板、以及如何设置告警规则和通知策略。欢迎大家阅读。
23 0
|
5月前
|
SQL 运维 Oracle
【迁移秘籍揭晓】ADB如何助你一臂之力,轻松玩转Oracle至ADB的数据大转移?
【8月更文挑战第27天】ADB(Autonomous Database)是由甲骨文公司推出的自动化的数据库服务,它极大简化了数据库的运维工作。在从传统Oracle数据库升级至ADB的过程中,数据迁移至关重要。
84 0
|
2月前
|
存储 Cloud Native NoSQL
云原生时代的数据库选型与架构设计
云原生时代的数据库选型与架构设计
28 0
|
4月前
|
机器学习/深度学习 数据可视化 数据挖掘
唤醒数据中台潜力:加速数据飞轮转动,实现数据驱动的秘籍
本文探讨了如何通过数据飞轮激活数据中台的潜力,实现数据驱动的创新。文章分析了数据中台面临的挑战,如数据孤岛和工具复杂性,并提出了建立统一数据治理架构、引入自动化数据管道和强化数据与业务融合等策略。通过实际案例和技术示例,展示了如何利用数据飞轮实现业务增长,强调了数据可视化和文化建设的重要性。旨在帮助企业充分挖掘数据价值,提升决策效率。
102 1
唤醒数据中台潜力:加速数据飞轮转动,实现数据驱动的秘籍
|
3月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
阿里云瑶池在2024云栖大会上重磅发布由Data+AI驱动的多模数据管理平台DMS:OneMeta+OneOps,通过统一、开放、多模的元数据服务实现跨环境、跨引擎、跨实例的统一治理,可支持高达40+种数据源,实现自建、他云数据源的无缝对接,助力业务决策效率提升10倍。
|
4月前
|
存储 机器学习/深度学习 数据管理
数据技术的进化史:从数据仓库到数据中台再到数据飞轮
数据技术的进化史:从数据仓库到数据中台再到数据飞轮
|
4月前
|
机器学习/深度学习 消息中间件 搜索推荐
【数据飞轮】驱动业务增长的高效引擎 —从数据仓库到数据中台的技术进化与实战
在数据驱动时代,企业逐渐从数据仓库过渡到数据中台,并进一步发展为数据飞轮。本文详细介绍了这一演进路径,涵盖数据仓库的基础存储与查询、数据中台的集成与实时决策,以及数据飞轮的自动化增长机制。通过代码示例展示如何在实际业务中运用数据技术,实现数据的最大价值,推动业务持续优化与增长。
152 4
|
4月前
|
机器学习/深度学习 搜索推荐 算法
从数据中台到数据飞轮:企业升级的必然之路
在探讨是否需从数据中台升级至数据飞轮前,我们应先理解两者之间的关系。数据中台作为数据集成、清洗及治理的强大平台,是数据飞轮的基础;而要实现数据飞轮,则需进一步增强数据自动化处理与智能化利用能力。借助机器学习与人工智能技术,“转动”数据并创建反馈机制,使数据在循环中不断优化,如改进产品推荐系统,进而形成数据飞轮。此外,为了适应市场变化,企业还需提高数据基础设施的敏捷性和灵活性,这可通过采用微服务架构和云计算技术来达成,从而确保数据系统的快速扩展与调整,支持数据飞轮高效运转。综上所述,数据中台虽为基础,但全面升级至数据飞轮则需在数据自动化处理、反馈机制及系统敏捷性方面进行全面提升。
117 14