【Python数据分析 - 9】:DataFrame结构中自定义行列索引(Pandas篇)

简介: 【Python数据分析 - 9】:DataFrame结构中自定义行列索引(Pandas篇)

pandas设置行列索引


本次以股票的数据为例


数据准备&DataFrame结构



  • 模块导入
import pandas as pd
import numpy as np



  • numpy准备数据
stock = np.random.normal(0, 1, [500, 504])




  • 使用pd.DataFrame(),将数据变为DataFrame结构


  • 生成的DataFrame中默认的行列索引为数字

2bba4bc13fe74093a915add17d4dfc2c.png

5e15a5c12cb64fe386e9eec25bac867c.png


自定义行索引


  • 准备行索引数据

a15e1036651f4021bc510454e7e211c1.png


设置行索引,在将数据变为DataFrame结构时添加:index=stock_index

625da87cd9ab4b30bad0737b4d87afbd.png

结果展示9402eaab2d934145a945f2a252f41232.png


自定义列索引


pandas中时间序列 - date_range函数


函数功能:生成一个固定频率的时间索引,使用此函数时,须指定start,end或periods,否则报错。


语法:pandas.date_range(start=None, end=None, periods=None, freq=‘D’, tz=None, normalize=False, name=None, closed=None, **kwargs)


主要参数说明:


   periods:固定时期,取值为整数或None,设置为整数时会从根据start的时期往后取到periods天。


   freq:日期偏移量,取值为string或DateOffset,默认为’D’;当设置为’B‘时表示除去周六和周日。


   normalize:若参数为True表示将start、end参数值正则化到午夜时间戳。


   name:生成时间索引对象的名称,取值为string或None。


   closed:当closed=‘left’ 表示在返回的结果基础上,再取左开右闭的结果;当closed='right’表示在返回的结果基础上,再取左闭右开的结果。



列索引设置


  • 准备列索引数据

6d63a6b94c2d40499a41d22129e42a38.png


列索引数据展示

3a5e168e9f9f45039975b6edc1712e43.png


设置列索引,在将数据变为DataFrame结构时添加:columns=date

18a1a0c8f8ee4aa4b171deab6eab5140.png

结果展示


b6c35876d2f042bda30bf2dad02d48ca.png


相关文章
|
19天前
|
缓存 监控 供应链
唯品会自定义 API 自定义操作深度分析及 Python 实现
唯品会开放平台提供丰富API,支持商品查询、订单管理、促销活动等电商全流程操作。基于OAuth 2.0认证机制,具备安全稳定的特点。通过组合调用基础接口,可实现数据聚合、流程自动化、监控预警及跨平台集成,广泛应用于供应链管理、数据分析和智能采购等领域。结合Python实现方案,可高效完成商品搜索、订单分析、库存监控等功能,提升电商运营效率。
|
19天前
|
缓存 监控 供应链
京东自定义 API 操作深度分析及 Python 实现
京东开放平台提供丰富API接口,支持商品、订单、库存等电商全链路场景。通过自定义API组合调用,可实现店铺管理、数据分析、竞品监控等功能,提升运营效率。本文详解其架构、Python实现与应用策略。
缓存 监控 供应链
33 0
缓存 监控 数据挖掘
34 0
|
3月前
|
数据采集 数据可视化 搜索推荐
Python数据分析全流程指南:从数据采集到可视化呈现的实战解析
在数字化转型中,数据分析成为企业决策核心,而Python凭借其强大生态和简洁语法成为首选工具。本文通过实战案例详解数据分析全流程,涵盖数据采集、清洗、探索、建模、可视化及自动化部署,帮助读者掌握从数据到业务价值的完整技能链。
391 0
|
5月前
|
机器学习/深度学习 数据采集 数据可视化
Python数据分析,别再死磕Excel了!
Python数据分析,别再死磕Excel了!
196 2
|
7月前
|
缓存 Shell 开发工具
[oeasy]python071_我可以自己做一个模块吗_自定义模块_引入模块_import_diy
本文介绍了 Python 中模块的导入与自定义模块的创建。首先,我们回忆了模块的概念,即封装好功能的部件,并通过导入 `__hello__` 模块实现了输出 "hello world!" 的功能。接着,尝试创建并编辑自己的模块 `my_file.py`,引入 `time` 模块以获取当前时间,并在其中添加自定义输出。
105 5
|
8月前
|
机器学习/深度学习 存储 数据可视化
这份Excel+Python飞速搞定数据分析手册,简直可以让Excel飞起来
本书介绍了如何将Python与Excel结合使用,以提升数据分析和处理效率。内容涵盖Python入门、pandas库的使用、通过Python包操作Excel文件以及使用xlwings对Excel进行编程。书中详细讲解了Anaconda、Visual Studio Code和Jupyter笔记本等开发工具,并探讨了NumPy、DataFrame和Series等数据结构的应用。此外,还介绍了多个Python包(如OpenPyXL、XlsxWriter等)用于在无需安装Excel的情况下读写Excel文件,帮助用户实现自动化任务和数据处理。
|
9月前
|
数据挖掘 数据处理 开发者
Python3 自定义排序详解:方法与示例
Python的排序功能强大且灵活,主要通过`sorted()`函数和列表的`sort()`方法实现。两者均支持`key`参数自定义排序规则。本文详细介绍了基础排序、按字符串长度或元组元素排序、降序排序、多条件排序及使用`lambda`表达式和`functools.cmp_to_key`进行复杂排序。通过示例展示了如何对简单数据类型、字典、类对象及复杂数据结构(如列车信息)进行排序。掌握这些技巧可以显著提升数据处理能力,为编程提供更强大的支持。
361 10
|
10月前
|
存储 数据挖掘 索引
Pandas数据结构:Series与DataFrame
本文介绍了 Python 的 Pandas 库中两种主要数据结构 `Series` 和 ``DataFrame`,从基础概念入手,详细讲解了它们的创建、常见问题及解决方案,包括数据缺失处理、数据类型转换、重复数据删除、数据筛选、排序、聚合和合并等操作。同时,还提供了常见报错及解决方法,帮助读者更好地理解和使用 Pandas 进行数据分析。
654 10

热门文章

最新文章

推荐镜像

更多