科普分布式架构

简介: 分布式架构主要是做了两件事,一是提高整体架构的吞吐量,二是提高系统的稳定性,让系统的可用性更高。

1. 分布式架构解决什么问题

主要是两个:

  • 大流量的处理

    通过集群技术将大规模并发请求负载均衡到不同的机器上。

  • 关键业务的保护

    提高后台服务的可用性,把故障隔离起来,阻止多米诺骨牌效应,如果流量过大,需要对业务降级。已保证关键业务的流转。

说白了就是干两件事、一是提高整体架构的吞吐量,二是提高系统的稳定性,让系统的可用性更高。

2. 如何提高架构性能

  • 缓存系统
  • 异步调用
  • 负载均衡
  • 数据分区
  • 数据镜像

3. 如何提高架构稳定性

  • 服务拆分
  • 服务冗余
  • 限流降级
  • 高可用架构
  • 高可用运维

4. 分布式系统的核心

imgimg

5. 全栈监控

imgimg
  • 基础层:监控主机和底层资源。比如:CPU、内存、网络吞吐、硬盘I/O、硬盘使用等。
  • 中间层:就是中间件层的监控。比如:Nginx、Reids、ActiveMQ、Kafka、MySQL、Tomcat等。
  • 应用层:监控应用层的使用。比如:HTTP访问吞吐量、响应时间、返回码、调用链路分析、性能瓶颈、还包括用户端的监控。

6. 服务治理

  • 梳理服务之间的依赖关系 (zipkin)
  • 服务状态和服务声明周期管理 (服务发现)
  • 整体架构版本管理 (类似于Springboot和Spring clound之间的版本对应)
  • 资源/服务调度
  • 服务状态的维持和拟合(一种不预期的变化会维持服务状态,例如服务挂掉。预期的变化会拟合服务状态、例如服务启动)
  • 服务的弹性伸缩和故障迁移 (docker、kubernetes)
  • 服务工作流和编排

7. 总结

7.1 构建分布式系统面临的问题

  • 分布式系统的硬件故障发生率高。故障发生是常态,需要尽可能地将运维流程自动化。
  • 需要良好的设计服务,避免某服务的单点故障对依赖它的其他服务造成大面积影响。
  • 为了容量的可伸缩性,服务的拆分、自治和无状态变得更加重要,可能需要对老的软件逻辑做大的修改。
  • 老的服务可能是异构的,此时需要让他们使用标准的协议,以便可以被调度、编排、且互相之间可以通信。
  • 服务软件故障的处理也变得复杂,需要优化的流程,以加快故障的恢复。
  • 为了管理各个服务的容量,让分布式系统发挥出最佳性能,需要有流量调度技术。
  • 分布式存储会让事务处理变得复杂;在事务遇到故障无法被自动恢复的情况下,手动恢复流程也会变得复杂。
  • 测试和查错的复杂度增大。
  • 系统的吞吐量会变大,但响应时间会变长。

7.2 了解一些解决方案

  • 需要有完善的监控系统,以便对服务运行状态有全面的了解。
  • 设计服务时要分析其依赖链;当非关键服务故障时,其他服务要自动降级功能,避免调用该服务。
  • 重构老的软件,使其能被服务化;可以参考 SOA 和微服务的设计方式,目标是微服务化;使用 Docker 和 Kubernetes 来调度服务。
  • 为老的服务编写接口逻辑来使用标准协议,或在必要时重构老的服务以使得它们有这些功能。
  • 自动构建服务的依赖地图,并引入好的处理流程,让团队能以最快速度定位和恢复故障,详见《故障处理最佳实践:应对故障》一文。
  • 使用一个 API Gateway,它具备服务流向控制、流量控制和管理的功能。
  • 事务处理建议在存储层实现;根据业务需求,或者降级使用更简单、吞吐量更大的最终一致性方案,或者通过二阶段提交、Paxos、Raft、NWR 等方案之一,使用吞吐量小的强一致性方案。
  • 通过更真实地模拟生产环境,乃至在生产环境中做灰度发布,从而增加测试强度;同时做充分的单元测试和集成测试以发现和消除缺陷;最后,在服务故障发生时,相关的多个团队同时上线自查服务状态,以最快地定位故障原因。
  • 通过异步调用来减少对短响应时间的依赖;对关键服务提供专属硬件资源,并优化软件逻辑以缩短响应时间。
目录
相关文章
|
5月前
|
人工智能 Kubernetes 数据可视化
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
本文回顾了一次关键词监测任务在容器集群中失效的全过程,分析了中转IP复用、调度节奏和异常处理等隐性风险,并提出通过解耦架构、动态IP分发和行为模拟优化采集策略,最终实现稳定高效的数据抓取与分析。
Kubernetes下的分布式采集系统设计与实战:趋势监测失效引发的架构进化
|
2月前
|
缓存 Cloud Native 中间件
《聊聊分布式》从单体到分布式:电商系统架构演进之路
本文系统阐述了电商平台从单体到分布式架构的演进历程,剖析了单体架构的局限性与分布式架构的优势,结合淘宝、京东等真实案例,深入探讨了服务拆分、数据库分片、中间件体系等关键技术实践,并总结了渐进式迁移策略与核心经验,为大型应用架构升级提供了全面参考。
|
2月前
|
存储 NoSQL 前端开发
【赵渝强老师】MongoDB的分布式存储架构
MongoDB分片通过将数据分布到多台服务器,实现海量数据的高效存储与读写。其架构包含路由、配置服务器和分片服务器,支持水平扩展,结合复制集保障高可用性,适用于大规模生产环境。
275 1
|
6月前
|
监控 算法 关系型数据库
分布式事务难题终结:Seata+DRDS全局事务一致性架构设计
在分布式系统中,CAP定理限制了可用性、一致性与分区容错的三者兼得,尤其在网络分区时需做出取舍。为应对这一挑战,最终一致性方案成为常见选择。以电商订单系统为例,微服务化后,原本的本地事务演变为跨数据库的分布式事务,暴露出全局锁失效、事务边界模糊及协议差异等问题。本文深入探讨了基于 Seata 与 DRDS 的分布式事务解决方案,涵盖 AT 模式实践、分片策略优化、典型问题处理、性能调优及高级特性实现,结合实际业务场景提供可落地的技术路径与架构设计原则。通过压测验证,该方案在事务延迟、TPS 及失败率等方面均取得显著优化效果。
335 61
|
7月前
|
监控 Linux 应用服务中间件
Linux多节点多硬盘部署MinIO:分布式MinIO集群部署指南搭建高可用架构实践
通过以上步骤,已成功基于已有的 MinIO 服务,扩展为一个 MinIO 集群。该集群具有高可用性和容错性,适合生产环境使用。如果有任何问题,请检查日志或参考MinIO 官方文档。作者联系方式vx:2743642415。
2218 57
|
11月前
|
存储 缓存 NoSQL
分布式系统架构8:分布式缓存
本文介绍了分布式缓存的理论知识及Redis集群的应用,探讨了AP与CP的区别,Redis作为AP系统具备高性能和高可用性但不保证强一致性。文章还讲解了透明多级缓存(TMC)的概念及其优缺点,并详细分析了memcached和Redis的分布式实现方案。此外,针对缓存穿透、击穿、雪崩和污染等常见问题提供了应对策略,强调了Cache Aside模式在解决数据一致性方面的作用。最后指出,面试中关于缓存的问题多围绕Redis展开,建议深入学习相关知识点。
715 8
|
7月前
|
消息中间件 缓存 算法
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
336 0
分布式开发:数字时代的高性能架构革命-为什么要用分布式?优雅草卓伊凡
|
9月前
|
并行计算 PyTorch 算法框架/工具
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
本文探讨了如何通过技术手段混合使用AMD与NVIDIA GPU集群以支持PyTorch分布式训练。面对CUDA与ROCm框架互操作性不足的问题,文章提出利用UCC和UCX等统一通信框架实现高效数据传输,并在异构Kubernetes集群中部署任务。通过解决轻度与强度异构环境下的挑战,如计算能力不平衡、内存容量差异及通信性能优化,文章展示了如何无需重构代码即可充分利用异构硬件资源。尽管存在RDMA验证不足、通信性能次优等局限性,但该方案为最大化GPU资源利用率、降低供应商锁定提供了可行路径。源代码已公开,供读者参考实践。
723 3
融合AMD与NVIDIA GPU集群的MLOps:异构计算环境中的分布式训练架构实践
|
9月前
|
人工智能 运维 监控
领先AI企业经验谈:探究AI分布式推理网络架构实践
当前,AI行业正处于快速发展的关键时期。继DeepSeek大放异彩之后,又一款备受瞩目的AI智能体产品Manus横空出世。Manus具备独立思考、规划和执行复杂任务的能力,其多智能体架构能够自主调用工具。在GAIA基准测试中,Manus的性能超越了OpenAI同层次的大模型,展现出卓越的技术实力。
|
11月前
|
存储 Prometheus Cloud Native
分布式系统架构6:链路追踪
本文深入探讨了分布式系统中的链路追踪理论,涵盖追踪与跨度的概念、追踪系统的模块划分及数据收集的三种方式。链路追踪旨在解决复杂分布式系统中请求流转路径不清晰的问题,帮助快速定位故障和性能瓶颈。文中介绍了基于日志、服务探针和边车代理的数据收集方法,并简述了OpenTracing、OpenCensus和OpenTelemetry等链路追踪协议的发展历程及其特点。通过理解这些概念,可以更好地掌握开源链路追踪框架的使用。
1101 41

热门文章

最新文章