Kafka 架构和原理机制 (图文全面详解)

本文涉及的产品
云原生网关 MSE Higress,422元/月
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
简介: 一文了解掌握 Kafka 的基本架构、原理、特性、应用场景,以及Zookeeper 在 kafka 的作用。

目录

  • 一:Kafka 简介
  • 二:Kafka 基本架构
  • 三:Kafka 基本原理
  • 四:Zookeeper 在 kafka 的作用
  • 五:Kafka 的特性
  • 六:Kafka 的应用场景

一:Kafka 简介

Apache Kafka 是分布式发布-订阅消息系统,在 kafka 官网上对 kafka 的定义:一个分布式发布-订阅消息传递系统。

Kafka 最初由 LinkedIn 公司开发,Linkedin 于 2010 年贡献给了 Apache 基金会并成为顶级开源项目。

Kafka 的主要应用场景有:日志收集系统和消息系统。

二:Kafka 基本架构

Kafka 的架构包括以下组件:

1、话题(Topic):是特定类型的消息流。消息是字节的有效负载(Payload),话题是消息的分类名;

2、生产者(Producer):是能够发布消息到话题的任何对象;

3、服务代理(Broker):已发布的消息保存在一组服务器中,它们被称为代理(Broker)或Kafka集群;

4、消费者(Consumer):可以订阅一个或多个话题,并从Broker拉数据,从而消费这些已发布的消息;

上图中可以看出,生产者将数据发送到 Broker 代理,Broker 代理有多个话题 topic ,消费者从 Broker 获取数据。

三:Kafka 基本原理

我们将消息的发布(publish)称作 producer,将消息的订阅(subscribe)表述为 consumer,将中间的存储阵列称作 broker(代理),这样就可以大致描绘出这样一个场面:

生产者将数据生产出来,交给 broker 进行存储,消费者需要消费数据了,就从 broker 中去拿出数据来,然后完成一系列对数据的处理操作。

多个 broker 协同合作,producer 和 consumer 部署在各个业务逻辑中被频繁的调用,三者通过 zookeeper 管理协调请求和转发,这样一个高性能的分布式消息发布订阅系统就完成了。

图上有个细节需要注意,producer 到 broker 的过程是 push,也就是有数据就推送到 broker,而 consumer 到 broker 的过程是 pull,是通过 consumer 主动去拉数据的。

四:Zookeeper 在 Kafka 的作用

1.  无论是 Kafka 集群,还是 producer 和 consumer ,都依赖于 Zookeeper 来保证系统可用性集群保存一些 meta 信息。

2.  Kafka 使用 Zookeeper 作为其分布式协调框架,可以很好地将消息生产、消息存储、消息消费的过程结合在一起。

3.  Kafka 借助 Zookeeper,让生产者、消费者和 broker 在内的所有组件,在无状态的情况下,建立起生产者和消费者的订阅关系,并实现生产者与消费者的负载均衡。

五:Kafka 的特性

1. 高吞吐量、低延迟

Kafka 每秒可以处理几十万条消息,它的延迟最低只有几毫秒,每个 topic 可以分多个 partition ,  consumer group 对 partition 进行 consume 操作。

2. 可扩展性

Kafka 集群支持热扩展。

3.  持久性、可靠性

消息被持久化到本地磁盘,并且支持数据备份防止数据丢失。

4.  容错性

允许集群中节点失败(若副本数量为n,则允许n-1个节点失败)

5.  高并发

支持数千个客户端同时读写。

六:Kafka 的应用场景

1.  日志收集

一个公司可以用 Kafka 收集各种服务的 log ,通过 Kafka 以统一接口服务的方式开放给各种 consumer,例如:hadoop、Hbase、Solr 等。

2.  消息系统

解耦和生产者和消费者、缓存消息等。

3.用户活动跟踪

Kafka 经常被用来记录 web 用户、或者 app 用户的各种活动,例如:浏览网页、搜索、点击等活动。

这些活动信息,被各个服务器发布到 Kafka 的 topic 中,订阅者再通过订阅这些 topic 来做实时的监控分析,或者装载到 hadoop 、数据仓库中做离线分析和挖掘。

4.  运营指标

Kafka 也经常用来记录运营监控数据。

包括收集各种分布式应用的数据,生产各种操作的集中反馈等,例如:报警和报告。

5. 流式处理

例如:spark streaming、storm 。

以上!

作者简介

陈睿 | mikechen , 10年+大厂架构经验,「mikechen 的互联网架构」系列文章作者,专注于互联网架构技术。

阅读「mikechen 的互联网架构」40W 字技术文章合集

Java并发 | JVM | MySQL | Spring | Redis | 分布式 | 高并发

网络异常,图片无法展示
|

相关文章
|
1月前
|
消息中间件 存储 设计模式
RocketMQ原理—5.高可用+高并发+高性能架构
本文主要从高可用架构、高并发架构、高性能架构三个方面来介绍RocketMQ的原理。
263 21
RocketMQ原理—5.高可用+高并发+高性能架构
|
1月前
|
人工智能 自然语言处理 安全
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
CodeAct是一种先进的AI辅助系统范式,深度融合自然语言处理与代码执行能力。通过自定义代码执行代理,开发者可精准控制代码生成、执行及管理流程。本文基于LlamaIndex框架构建CodeAct Agent,解析其技术架构,包括代码执行环境、工作流定义系统、提示工程机制和状态管理系统。同时探讨安全性考量及应用场景,如软件开发、数据科学和教育领域。未来发展方向涵盖更精细的代码生成、多语言支持及更强的安全隔离机制,推动AI辅助编程边界拓展。
77 3
基于LlamaIndex实现CodeAct Agent:代码执行工作流的技术架构与原理
|
1月前
|
存储 编解码 搜索推荐
文生图架构设计原来如此简单之社区与共享机制
工作流共享是文生图应用社区建设的核心功能,它使用户能够分享创作经验和技巧,形成知识共享生态。工作流序列化与存储设计需要解决复杂工作流的高效表示问题。
75 10
|
2月前
|
机器学习/深度学习 缓存 自然语言处理
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
Tiktokenizer 是一款现代分词工具,旨在高效、智能地将文本转换为机器可处理的离散单元(token)。它不仅超越了传统的空格分割和正则表达式匹配方法,还结合了上下文感知能力,适应复杂语言结构。Tiktokenizer 的核心特性包括自适应 token 分割、高效编码能力和出色的可扩展性,使其适用于从聊天机器人到大规模文本分析等多种应用场景。通过模块化设计,Tiktokenizer 确保了代码的可重用性和维护性,并在分词精度、处理效率和灵活性方面表现出色。此外,它支持多语言处理、表情符号识别和领域特定文本处理,能够应对各种复杂的文本输入需求。
276 6
深入解析Tiktokenizer:大语言模型中核心分词技术的原理与架构
|
3月前
|
存储 监控 算法
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
在数字化办公时代,公司监控上网软件成为企业管理网络资源和保障信息安全的关键工具。本文深入剖析C++中的链表数据结构及其在该软件中的应用。链表通过节点存储网络访问记录,具备高效插入、删除操作及节省内存的优势,助力企业实时追踪员工上网行为,提升运营效率并降低安全风险。示例代码展示了如何用C++实现链表记录上网行为,并模拟发送至服务器。链表为公司监控上网软件提供了灵活高效的数据管理方式,但实际开发还需考虑安全性、隐私保护等多方面因素。
52 0
公司监控上网软件架构:基于 C++ 链表算法的数据关联机制探讨
|
3月前
|
存储 SQL 缓存
MySQL原理简介—2.InnoDB架构原理和执行流程
本文介绍了MySQL中更新语句的执行流程及其背后的机制,主要包括: 1. **更新语句的执行流程**:从SQL解析到执行器调用InnoDB存储引擎接口。 2. **Buffer Pool缓冲池**:缓存磁盘数据,减少磁盘I/O。 3. **Undo日志**:记录更新前的数据,支持事务回滚。 4. **Redo日志**:确保事务持久性,防止宕机导致的数据丢失。 5. **Binlog日志**:记录逻辑操作,用于数据恢复和主从复制。 6. **事务提交机制**:包括redo日志和binlog日志的刷盘策略,确保数据一致性。 7. **后台IO线程**:将内存中的脏数据异步刷入磁盘。
181 12
|
2月前
|
消息中间件 Kafka API
原理剖析| Kafka Exactly Once 语义实现原理:幂等性与事务消息
原理剖析| Kafka Exactly Once 语义实现原理:幂等性与事务消息
|
4月前
|
Java 网络安全 开发工具
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
通过本文,读者可以深入了解Git的核心概念和实际操作技巧,提升版本管理能力。
|
5月前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。
|
1月前
|
Cloud Native Serverless 流计算
云原生时代的应用架构演进:从微服务到 Serverless 的阿里云实践
云原生技术正重塑企业数字化转型路径。阿里云作为亚太领先云服务商,提供完整云原生产品矩阵:容器服务ACK优化启动速度与镜像分发效率;MSE微服务引擎保障高可用性;ASM服务网格降低资源消耗;函数计算FC突破冷启动瓶颈;SAE重新定义PaaS边界;PolarDB数据库实现存储计算分离;DataWorks简化数据湖构建;Flink实时计算助力风控系统。这些技术已在多行业落地,推动效率提升与商业模式创新,助力企业在数字化浪潮中占据先机。
138 12

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等