一文搞懂Go语言标准库,Time

简介: 在编程过程中,我们经常会用到与时间和日期相关的各种需求,下面来介绍 Go 语言中有关时间的一些基本用法。

在编程过程中,我们经常会用到与时间和日期相关的各种需求,下面来介绍 Go 语言中有关时间的一些基本用法。

时间类型

time.Time 类型表示时间。可以通过 time.Now() 函数获取当前的时间对象,然后获取时间对象的年月日时分秒等信息。

示例代码如下:

func main() {
  now := time.Now() //获取当前时间
  fmt.Printf("当前时间:%v\n", now)
  //当前时间:2021-12-26 09:38:42.334358833 +0000 UTC m=+0.000056108
  year := now.Year()     //年
  month := now.Month()   //月
  day := now.Day()       //日
  hour := now.Hour()     //小时
  minute := now.Minute() //分钟
  second := now.Second() //秒
  fmt.Printf("%d-%02d-%02d %02d:%02d:%02d\n", year, month, day, hour, minute, second)
  fmt.Printf("%T,%T,%T,%T,%T,%T,%T\n", now, year, month, day, hour, minute, second)
  //time.Time,int,time.Month,int,int,int,int
}
复制代码

时间戳

时间戳是自1970年1月1日(08:00:00GMT)至当前时间的总毫秒数。它也被称为Unix时间戳(UnixTimestamp)。在 GoLang 中,获取时间戳的操作如下:

func main() {
  now := time.Now()            //获取当前时间
  timestamp1 := now.Unix()     //时间戳
  timestamp2 := now.UnixNano() //纳秒时间戳
  fmt.Printf("current timestamp1:%v\n", timestamp1)
  fmt.Printf("current timestamp2:%v\n", timestamp2)
}
复制代码

可以通过 time.Unix来直接将时间戳转化为当前时间格式。

func main() {
  timestamp := time.Now().Unix()
  timeObj := time.Unix(timestamp, 0) //将时间戳转为时间格式
  fmt.Println(timeObj) //2021-12-26 09:47:39 +0000 UTC
  year := timeObj.Year()     //年
  month := timeObj.Month()   //月
  day := timeObj.Day()       //日
  hour := timeObj.Hour()     //小时
  minute := timeObj.Minute() //分钟
  second := timeObj.Second() //秒
  fmt.Printf("%d-%02d-%02d %02d:%02d:%02d\n", year, month, day, hour, minute, second) //2021-12-26 09:47:39
}
复制代码

时间间隔

time.Duration是time包定义的一个类型,它代表两个时间点之间经过的时间,以纳秒为单位。time.Duration表示一段时间间隔,可表示的最长时间段大约290年。

time包中定义的时间间隔类型的常量如下:

const (
    Nanosecond  Duration = 1
    Microsecond          = 1000 * Nanosecond
    Millisecond          = 1000 * Microsecond
    Second               = 1000 * Millisecond
    Minute               = 60 * Second
    Hour                 = 60 * Minute
)
复制代码

例如:time.Duration表示1纳秒,time.Second表示1秒。

操作时间

Add

对于时间+时间间隔的需求,我们可以使用 Add 方法如下:

func (t Time) Add(d Duration) Time

func main() {
  now := time.Now()
  fmt.Println(now)
  h := time.Duration(1)
  m := time.Duration(2)
  s := time.Duration(3)
  // 当前时间加1小时2分3秒后的时间
  later := now.Add(time.Hour*h + time.Minute*m + time.Second*s) 
  fmt.Println(later)
}
复制代码

注意在这里并不能增加年\月\日,仅能增加时分秒,也就是时间间隔 time.Duration 类型中的常量。

Sub

求两个时间之间的差值:

func (t Time) Sub(u Time) Duration

返回一个时间段t-u。如果结果超出了Duration可以表示的最大值/最小值,将返回最大值/最小值。要获取时间点t-d(d为Duration),可以使用t.Add(-d)。

func main() {
  now := time.Now()
  fmt.Println(now)
  targetTime := now.Add(time.Hour)
  // 目标时间与此时相比相差1h0m0s
  fmt.Println(targetTime.Sub(now)) //1h0m0s
  before := now.Add(time.Hour*-1) // 当前时间减1小时后的时间
  fmt.Println(before)
}
复制代码

Equal

func (t Time) Equal(u Time) bool

判断两个时间是否相同,会考虑时区的影响,因此不同时区标准的时间也可以正确比较。和用 t==u 不同的是,这种方法还会比较地点和时区信息。

Before

func (t Time) Before(u Time) bool

如果t代表的时间点在u之前,返回真;否则返回假。

After

func (t Time) After(u Time) bool

如果 t 代表的时间点在 u 之后,返回真;否则返回假。

定时器

使用time.Tick(时间间隔)来设置定时器。

func main() {
  ticker := time.Tick(time.Second) //定义一个1秒间隔的定时器
  for i := range ticker {
    fmt.Println(i)//每秒都会执行的任务
  }
}
复制代码

时间格式化

时间类型有一个自带的方法Format进行格式化,需要注意的是 Go 语言中格式化时间模板不是常见的Y-m-d H:M:S而是使用 Go 的诞生时间2006年1月2号15点04分(记忆口诀为2006 1 2 3 4)。

func main() {
    now := time.Now()
    // 格式化的模板为Go的出生时间2006年1月2号15点04分 Mon Jan
    // 24小时制
    fmt.Println(now.Format("2006-01-02 15:04:05.000 Mon Jan"))
    // 12小时制
    fmt.Println(now.Format("2006-01-02 03:04:05.000 PM Mon Jan"))
    fmt.Println(now.Format("2006/01/02 15:04"))
    fmt.Println(now.Format("15:04 2006/01/02"))
    fmt.Println(now.Format("2006/01/02"))
}
复制代码

解析字符串格式的时间

now := time.Now()
fmt.Println(now)
// 加载时区
loc, err := time.LoadLocation("Asia/Shanghai")
if err != nil {
    fmt.Println(err)
    return
}
// 按照指定时区和指定格式解析字符串时间
timeObj, err := time.ParseInLocation("2006/01/02 15:04:05", "2021/12/27 18:48:44", loc)
if err != nil {
    fmt.Println(err)
    return
}
fmt.Println(timeObj)
fmt.Println(timeObj.Sub(now))


相关文章
|
6天前
|
存储 JSON 监控
Viper,一个Go语言配置管理神器!
Viper 是一个功能强大的 Go 语言配置管理库,支持从多种来源读取配置,包括文件、环境变量、远程配置中心等。本文详细介绍了 Viper 的核心特性和使用方法,包括从本地 YAML 文件和 Consul 远程配置中心读取配置的示例。Viper 的多来源配置、动态配置和轻松集成特性使其成为管理复杂应用配置的理想选择。
23 2
|
5天前
|
Go 索引
go语言中的循环语句
【11月更文挑战第4天】
13 2
|
5天前
|
Go C++
go语言中的条件语句
【11月更文挑战第4天】
16 2
|
9天前
|
程序员 Go
go语言中的控制结构
【11月更文挑战第3天】
85 58
|
8天前
|
监控 Go API
Go语言在微服务架构中的应用实践
在微服务架构的浪潮中,Go语言以其简洁、高效和并发处理能力脱颖而出,成为构建微服务的理想选择。本文将探讨Go语言在微服务架构中的应用实践,包括Go语言的特性如何适应微服务架构的需求,以及在实际开发中如何利用Go语言的特性来提高服务的性能和可维护性。我们将通过一个具体的案例分析,展示Go语言在微服务开发中的优势,并讨论在实际应用中可能遇到的挑战和解决方案。
|
5天前
|
Go
go语言中的 跳转语句
【11月更文挑战第4天】
13 4
|
5天前
|
JSON 安全 Go
Go语言中使用JWT鉴权、Token刷新完整示例,拿去直接用!
本文介绍了如何在 Go 语言中使用 Gin 框架实现 JWT 用户认证和安全保护。JWT(JSON Web Token)是一种轻量、高效的认证与授权解决方案,特别适合微服务架构。文章详细讲解了 JWT 的基本概念、结构以及如何在 Gin 中生成、解析和刷新 JWT。通过示例代码,展示了如何在实际项目中应用 JWT,确保用户身份验证和数据安全。完整代码可在 GitHub 仓库中查看。
18 1
|
9天前
|
Go 数据处理 API
Go语言在微服务架构中的应用与优势
本文摘要采用问答形式,以期提供更直接的信息获取方式。 Q1: 为什么选择Go语言进行微服务开发? A1: Go语言的并发模型、简洁的语法和高效的编译速度使其成为微服务架构的理想选择。 Q2: Go语言在微服务架构中有哪些优势? A2: 主要优势包括高性能、高并发处理能力、简洁的代码和强大的标准库。 Q3: 文章将如何展示Go语言在微服务中的应用? A3: 通过对比其他语言和展示Go语言在实际项目中的应用案例,来说明其在微服务架构中的优势。
|
9天前
|
Go 数据处理 调度
探索Go语言的并发模型:Goroutines与Channels的协同工作
在现代编程语言中,Go语言以其独特的并发模型脱颖而出。本文将深入探讨Go语言中的Goroutines和Channels,这两种机制如何协同工作以实现高效的并发处理。我们将通过实际代码示例,展示如何在Go程序中创建和管理Goroutines,以及如何使用Channels进行Goroutines之间的通信。此外,本文还将讨论在使用这些并发工具时可能遇到的常见问题及其解决方案,旨在为Go语言开发者提供一个全面的并发编程指南。
|
6天前
|
Go 调度 开发者
探索Go语言中的并发模式:goroutine与channel
在本文中,我们将深入探讨Go语言中的核心并发特性——goroutine和channel。不同于传统的并发模型,Go语言的并发机制以其简洁性和高效性著称。本文将通过实际代码示例,展示如何利用goroutine实现轻量级的并发执行,以及如何通过channel安全地在goroutine之间传递数据。摘要部分将概述这些概念,并提示读者本文将提供哪些具体的技术洞见。