羡慕实时数据看板?来看看Python的交互数据分析可视化工具!

简介: Altair是Python统计可视化库,提供了强大而简洁的可视化语法,可以产出漂亮的数据分析可视化结果,并支持交互式操作和勾选局部数据深入分析。本文以实例讲解Altair的数据分析过程,以及交互文档报告的生成。

💡 作者:韩信子@ShowMeAI
📘 数据分析实战系列https://www.showmeai.tech/tutorials/40
📘 本文地址https://www.showmeai.tech/article-detail/320
📢 声明:版权所有,转载请联系平台与作者并注明出处
📢 收藏ShowMeAI查看更多精彩内容

大家都看过非常酷的实时数据看板,能用最直观的方式给到我们业务数据的信息,如下图所示。

而在 Python 中,我们也有非常易用的工具,可以产出漂亮的数据分析可视化结果,并支持交互式操作和勾选局部数据深入分析,ShowMeAI在本篇内容中,将给大家讲解到 📘Altair 这样一个功能强大的 Python 交互式数据分析工具,它能产出如下图所示的交互分析结果:

💡 数据分析实现模板

为了让大家在自己的数据上体验 Altair 的分析结果,我们下面编写的一个函数模板,用于为数据集中的所有特征生成交互式图表。

具体一点说,我们希望它为数值型字段(特征)返回『直方图+散点图』,为类别型特征返回『柱状图+箱线图』,Altair 返回的这些图表结果都是可以交互式操作的。

# 导入工具库
import altair as alt
import pandas as pd

# 忽律数据规模限制
alt.data_transformers.enable('default', max_rows=None)


# 构建chart函数,它读取数据和字段名称,返回一个交互式图表结果
def chart(dataset, column_name, target_var):
    w = 500
    single = alt.selection_single()

    # 灰度图与柱状图

    # 如果是类别型字段,我们不用分桶
    if (column_name in dataset.select_dtypes(include='object').columns.to_list()):
        a = alt.Chart(dataset).mark_bar().encode(
        alt.X(column_name + ':N', bin=False),
        alt.Y('count()'),
        color = alt.condition(single, alt.value('#4c78a8'), alt.value('lightgray')),
        tooltip=['count()', alt.Tooltip(column_name, bin=False)]
        ).add_selection(single).properties(width=w)

    # 如果是数值型字段,我们先分桶
    else:
        a = alt.Chart(dataset).mark_bar().encode(
        alt.X(column_name + ':Q', bin=True),
        alt.Y('count()'),
        color = alt.condition(single, alt.value('#4c78a8'), alt.value('lightgray')),
        tooltip=['count()', alt.Tooltip(column_name, bin=True)]
        ).add_selection(single).properties(width=w)

    # 对于类别型字段,我们构建它和目标字段的一个箱线图表;对于数值型字段,我们构建它们和目标字段的散点分布图
    try:        
        if (column_name in dataset.select_dtypes(include='object').columns.to_list()):
            b = alt.Chart(dataset).mark_boxplot().encode( #, title="Boxplot of " + column_name
            alt.X(column_name + ':N'),
            alt.Y(target_var),
            color = alt.condition(single, alt.value('#4c78a8'), alt.value('lightgray')),
            tooltip=[target_var]
            ).add_selection(single).properties(width=w)
        else:
            b = alt.Chart(dataset).mark_point().encode(
            alt.X(column_name + ':Q'),
            alt.Y(target_var),
            color = alt.condition(single, alt.value('#4c78a8'), alt.value('lightgray')),
            tooltip=[target_var]
            ).add_selection(single).properties(width=w)
    except:
        pass

    return(a | b)
AI 代码解读

大家可以把它应用在自己的数据上,得到的结果图如下所示(而且它们是可以用鼠标交互操作的)。在下面的内容里,我们会告诉大家如何把结果存储为 html 报告,大家每次打开 html 结果文件,即可进行交互式操作,而无需每次都重新分析。

💡 数据分析&交互文档报告

下面的代码可以将所有可视化结果编译到一个 html 文档中,打开这个 html 文件,大家就可以得到一个可交互的可视化数据分析平台。

# 把所有的altair图表添加到一个列表里
myl = []
for col in dataset.columns:
    try:
        myl.append(chart(dataset, col, target_var))
    except:
        pass
    else:
        pass

# 编译所有的图表到1个html文件中
a = myl[0]
for i in range(1,len(myl)):
    a = a & myl[i]
a.properties(
    title = 'Feature Histograms & Boxplots'
).configure_axis(labelFontSize=15, titleFontSize=25)
a.save('figures/Feature_Visuals.html')

# 检查是否所有的字段都可以被可视化
print('Features accounted for:', len(myl), 'out of', len(dataset.T))
AI 代码解读

参考资料

目录
打赏
0
0
2
0
2389
分享
相关文章
1688商品详情API实战:Python调用全流程与数据解析技巧
本文介绍了1688电商平台的商品详情API接口,助力电商从业者高效获取商品信息。接口可返回商品基础属性、价格体系、库存状态、图片描述及商家详情等多维度数据,支持全球化语言设置。通过Python示例代码展示了如何调用该接口,帮助用户快速上手,适用于选品分析、市场研究等场景。
【Azure Developer】分享两段Python代码处理表格(CSV格式)数据 : 根据每列的内容生成SQL语句
本文介绍了使用Python Pandas处理数据收集任务中格式不统一的问题。针对两种情况:服务名对应多人拥有状态(1/0表示),以及服务名与人名重复列的情况,分别采用双层for循环和字典数据结构实现数据转换,最终生成Name对应的Services列表(逗号分隔)。此方法高效解决大量数据的人工处理难题,减少错误并提升效率。文中附带代码示例及执行结果截图,便于理解和实践。
122 4
淘宝商品详情API的调用流程(python请求示例以及json数据示例返回参考)
JSON数据示例:需要提供一个结构化的示例,展示商品详情可能包含的字段,如商品标题、价格、库存、描述、图片链接、卖家信息等。考虑到稳定性,示例应基于淘宝开放平台的标准响应格式。
在Python中对数据点进行标签化
本文介绍了如何在Python中使用Matplotlib和Seaborn对数据点进行标签化,提升数据可视化的信息量与可读性。通过散点图示例,展示了添加数据点标签的具体方法。标签化在标识数据点、分类数据可视化及趋势分析中具有重要作用。文章强调了根据需求选择合适工具,并保持图表清晰美观的重要性。
64 15
1688 商品数据接口终极指南:Python 开发者如何高效获取标题 / 价格 / 销量数据(附调试工具推荐)
1688商品列表API是阿里巴巴开放平台提供的服务,允许开发者通过API获取1688平台的商品信息(标题、价格、销量等)。适用于电商选品、比价工具、供应链管理等场景。使用时需构造请求URL,携带参数(如q、start_price、end_price等),发送HTTP请求并解析返回的JSON/XML数据。示例代码展示了如何用Python调用该API获取商品列表。
135 18
Python爬虫与代理IP:高效抓取数据的实战指南
在数据驱动的时代,网络爬虫是获取信息的重要工具。本文详解如何用Python结合代理IP抓取数据:从基础概念(爬虫原理与代理作用)到环境搭建(核心库与代理选择),再到实战步骤(单线程、多线程及Scrapy框架应用)。同时探讨反爬策略、数据处理与存储,并强调伦理与法律边界。最后分享性能优化技巧,助您高效抓取公开数据,实现技术与伦理的平衡。
143 4

推荐镜像

更多
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问