1. 什么是镜像变换
直接看下面这张图:
这张图很好的诠释了镜像变化,关于y轴的变化,关于x轴的变化。这种关于任意轴的变化,就是镜像了。
2d下的镜像矩阵变化
我们以图像关于Y轴镜像为例子:原图形和结果图形上所有点的都存在的关系就应该是 x = -x,
也就是都只有x发生变化。这种通用的变化其实可以用矩阵表示,2D空间中的点其实可以用[x,y ] 表示。对角线的两个1就是关于那个轴对称:
这些都是关于x轴、 y轴的对称, 如果说关于2d平面的任意一条直线呢,当然有人已经帮我们推导出来了如下图:(数学证明我就不给出了,有兴趣的可以自行百度,本篇文章注重3d镜像矩证的推导)
3d 图形下关于任意平面的镜像矩阵推导:
首先给大家介绍下three.js 中的Plane 有两部分构成一个是平面的法向量(normal - 单位向量)和原点到平面的距离(constant); 平面上的点都满足 Ax + By + Cz + D = 0; 这个平面推导过程不清楚的同学可以看下这里:点击这里
- A, B ,C 这3个参数代表的是平面法向量的(x,y,z)
- D 就是上文的constant这个参数
问题很简单假设空间中存在点P 和(x,y,z) 以及平面(n,D) 求P点关于平面的镜像矩阵如图:
简单解释一下图中内容:
设点P(x, y, z)为平面正方向上的一点,点O是P(x, y, z)在平面上的投影,点A(xa, ya, za)是平面上任取的一点,而P’(x’, y’, z’)则是点P(x, y, z)相对与平面的镜像点,另外的,我们还假设由点A到点P的向量为a(x - xa, y - ya, z - za),由点O到点P的向量为b,平面法向量为n(xn, yn, zn),平面到原点的带符号距离为D.
其实说白了我就是推导P’ = mirrorMatrix * P 。
从图片中可以的出 P’P = 2 b 所以可以得出P’ = P - 2b
所以我们现在的问题是如何求解b向量 ? 其实只要求解 a 向量在法向量上的投影就好了
所以就能够得到 b = a * n * n
ok 由于 a* n 是一个标量所以在这里我们先求解一下
a * n = (x - xa, y - ya, z - za ) * (xn, yn, zn) = (x - xa) * xn + (y - ya) * yn + (z - za) * zn = x * xn + y * yn + z * zn - xa * xn - ya * yn - za * zn
又因为点A是平面上的点,所以自然满足平面方程 (不清楚的同学点击这里:点击)
xa * xn + ya * yn + za * zn + D = 0
D = - (xa * xn + ya * yn + za * zn****)
带入到上面 a * n 的方程 :
a*n = x * xn + y*yn + z *zn + D
所以这时候b向量就可以很好的表示了
b = ( x * xn + y*yn + z*zn + D ) * n
截止到这里我们已经成功的消元了, 因为A 点是空间中任意一点嘛。
P’ = P - 2b = P - 2 *( x * xn + y*yn + z*zn + D ) * n
到这里我们已经成功求出 P 和 P’ 的关系
接下来就是求出 在 x ,y ,z 上的分量。
首先尝试计算点P’的x分量,我们有:
P’x = x - 2 * (x * xn + y * yn + z * zn + D) * xn
= (1 - 2 * xn * xn) * x - 2 * xn * yn * y - 2 * xn * zn * z - 2 * xn * D
根据这个表达式,并根据矩阵乘法规则,我们便可以得到变换矩阵的第一行元素:
m11 = 1 - 2 * xn * xn
m12 = -2 * xn * yn
m13 = -2 * xn * zn
m14 = -2 * xn * D
同样的方法,点P’的y,z分量分别为:
P’y = y - 2 * (x * xn + y * yn + z * zn + D) * yn
= - 2 * xn * yn * x + (1 - 2 * yn * yn) * y - 2 * yn * zn * z - 2 * yn * D
P’z = z - 2 * (x * xn + y * yn + z * zn + D) * zn
= - 2 * xn * zn * x - 2 * yn * zn * y + (1 - 2 * zn * zn) * z - 2 * zn * D
对应的,矩阵的第二行元素和第三行元素分别为:
m21 = -2 * xn * yn
m22 = 1 - 2 * yn * yn
m23 = -2 * yn * zn
m24 = -2 * yn * D
m31 = -2 * xn * zn
m32 = -2 * yn * zn
m33 = 1 - 2 * zn * zn
m34 = -2 * zn * D
矩阵的最后一行 我们暂时不关心设置为默认:
m41 = 0
m42 = 0
m43 = 0
m44 = 1
最后的提醒:
- 空间中如果是圆者是弧这种图像 关于任意平面对称, 这时候的图像的nomal 应该是 Matrix3 不带位移的。 也就是将文中的Matrix4 转为Matrix3
- 本文是矩阵乘以向量所以是矩阵在前,如果在实际运用中你是后乘,也就是矩阵在后面 需要将m14 和 m41 、 m24 和 m42 、 m34 和 m43 、 互换位置。不清楚的同学百度搜索向量和矩阵相乘。