机器学习:从公式推导到代码实现一元线性回归

简介: 机器学习:从公式推导到代码实现一元线性回归

机器学习:从公式推导到代码实现一元线性回归

什么是线性回归

我们有一个数据集D={(X1,Y1),(X2,Y2),(X3,Y3).....)},把这组数据可视化出来如图所示:
在这里插入图片描述
线性回归通俗易懂的说就是通过这些点中找到一条直线使这条直线到每个点的距离最小,我们在寻找这条直线的过程就叫做线性回归。图中点的横坐标也叫自变量,如果自变量的维度是1,那么就叫做一元线性回归(如(1,2,3)),相反,如果不是1如((1,2),(1,3)),那么就叫做多元线性回归。
最终结果如下:
在这里插入图片描述

求解过程

我们如果想找到这条直线,首先设一个方程:Yi=w*Xi+b,我们通过数据集已知x和y,只要我们在知道w和b,那么我们就求解完成。我们要找的这条直线是距离每个点最近的,我们采用最小二乘估计来求解,这个方法的思路就是算出所有点到直线的距离(每个点到直线的距离我们采用均方误差的方式计算),我们会得到一个带有未知数的函数,如图所示:
在这里插入图片描述
E(w,b)为LossFunction,是关于w与b的凸函数(判断函数的凹凸性可通过函数的二阶导数判断),形状类似于y=x^2的U形曲线,所有函数的极值点就是它的最小值点,我们对E(w,b)分别求偏导数,这样就可以得出w,b的最优解。求解过程如图所示:
对w求解
在这里插入图片描述
对b求解偏导数
在这里插入图片描述
使b的偏导数=0
在这里插入图片描述
我们把这个式子带入上面的对w求偏导数=0的式子
在这里插入图片描述
在这里插入图片描述
化简得到:
在这里插入图片描述
通过w求出b在这里插入图片描述
上述代码我们可以通过python的for循环方式实现,如果我们想通过numpy库的矩阵加速方式实现,我们需要的关于w的公式继续化简
化简方式:
在这里插入图片描述
在这里插入图片描述

代码实现

import numpy as np

import matplotlib.pyplot as plt


class One_model(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y
        self.x_mean = np.mean(self.x)
        self.y_mean = np.mean(self.y)

#传统算法计算
    def train_tradition(self):
        parameter = []
        for i in range(len(self.x)):
            w1 = ((self.x[i] - self.x_mean) * (self.y[i] - self.y_mean))
            w2 = (self.x[i] - self.x_mean) * (self.x[i] - self.x_mean)
            parameter.append([int(w1), int(w2)])
        w1 = int(0)
        w2 = int(0)
        for i in parameter:
            w1 += i[0]
            w2 += i[1]
        w = w1 / w2
        b = self.y_mean - w * self.x_mean
        print('tradition parameter', 'w:', w, 'b:', b)
        return w, b

    def train_matrix(self): #矩阵加速运算
        w1 = np.dot((self.x - self.x_mean), (self.y - self.y_mean))
        w2 = np.dot((self.x - self.x_mean), (self.x - self.x_mean))
        w = w1 / w2
        b = self.y_mean - w * self.x_mean
        print('matrix parameter', 'w:', w, 'b:', b)

    def data_view(self):  # 绘制回归线
        # 绘制
        plt.scatter(self.x, self.y, label='root data', color='k', s=5)  # s 点的大小
        plt.plot(self.x, 5 * self.x + 60, label='regression line')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.legend()
        plt.title('simple linear regression')
        plt.show()
        return


if __name__ == '__main__':
    x = np.array(list([2, 6, 8, 8, 12, 16, 20, 20, 22, 26]))
    y = np.array(list([58, 105, 88, 118, 117, 137, 157, 169, 149, 202]))
    demo1 = One_model(x, y)
    demo1.train_tradition()
    demo1.data_view()

    # x1=int(input(111))
    # One_model.predict(x1)
目录
相关文章
|
3月前
|
机器学习/深度学习 算法 TensorFlow
机器学习算法简介:从线性回归到深度学习
【5月更文挑战第30天】本文概述了6种基本机器学习算法:线性回归、逻辑回归、决策树、支持向量机、随机森林和深度学习。通过Python示例代码展示了如何使用Scikit-learn、statsmodels、TensorFlow库进行实现。这些算法在不同场景下各有优势,如线性回归处理连续值,逻辑回归用于二分类,决策树适用于规则提取,支持向量机最大化类别间隔,随机森林集成多个决策树提升性能,而深度学习利用神经网络解决复杂模式识别问题。理解并选择合适算法对提升模型效果至关重要。
211 4
|
3月前
|
机器学习/深度学习 数据采集 人工智能
【机器学习】解释什么是线性回归?
【5月更文挑战第15天】【机器学习】解释什么是线性回归?
|
12天前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
65 2
|
20天前
|
JSON Shell API
阿里云PAI-Stable Diffusion开源代码浅析之所有api的入参如何看
阿里云PAI-Stable Diffusion开源代码浅析之所有api的入参如何看
|
2月前
|
机器学习/深度学习 数据采集 算法
【机器学习】线性回归:以房价预测为例
【机器学习】线性回归:以房价预测为例
115 1
|
2月前
|
机器学习/深度学习 搜索推荐
解决冷启动问题的机器学习方法和一个简化的代码示例
解决冷启动问题的机器学习方法和一个简化的代码示例
|
2月前
|
机器学习/深度学习 数据可视化 算法
【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归
【阿旭机器学习实战】【29】产品广告投放实战案例---线性回归
|
1月前
|
机器学习/深度学习 人工智能 供应链
|
3月前
|
机器学习/深度学习 Python
利用Python实现一个简单的机器学习模型:线性回归详解
利用Python实现一个简单的机器学习模型:线性回归详解
88 2
|
2月前
|
机器学习/深度学习 算法 数据格式
机器学习线性回归——概念梳理及非线性拟合
机器学习线性回归——概念梳理及非线性拟合
22 0

热门文章

最新文章