全球名校AI课程库(15)| Stanford斯坦福 · 线性代数与矩阵方法导论课程『Introduction to Applied Linear Algebra』

简介: 快速补充线性代数的必选课程!课程用了非常多的例子和图标,来直观地表示向量、矩阵与复杂世界的关系,并将数学转化为解决工程问题的能力。
ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论
🏆 课程学习中心 | 🚧 CS数学基础课程合辑 | 🌍 课程主页 | 📺 中英字幕视频 | 🚀 项目代码解析


课程介绍

线性代数,是数据科学高阶课程的前置课程,也是前沿热门应用领域的根基。数据科学、机器学习、人工智能、信号和图像处理、层析成像、导航、金融等等,都建立在数学的基础之上。如果你想快速补充线性代数的相关知识,ENGR108 这门课是非常好的选择!

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

ENGR108 (曾用名:EE103、CME103)是全球顶级院校斯坦福开设的以线性代数和矩阵论为主题的专业课程。不同于定理证明矩阵运算的传统内容,这门课程更直观,用非常多的例子和图标,来表示向量、矩阵与复杂世界的关系,并能够解决现实问题。

线性代数的相关知识,向量、矩阵与矩阵运算、线性拟合、范数、线性方程等,这门课都已覆盖,而且设计巧妙,结合了实际应用场景,将数学转化为解决工程问题的能力。

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

课程讲师 Stephen Boy,斯坦福教授,是目前全球讲授线性代数、矩阵论方向最著名的老师之一,也是高赞图书《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares(应用线性代数简介——向量、矩阵和最小二乘法)》、《Convex optimization(凸优化)》的联合作者。

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

《Introduction to Applied Linear Algebra – Vectors, Matrices, and Least Squares(应用线性代数简介——向量、矩阵和最小二乘法)》也是本门课程的教材。课程网站中有这本书的电子版!不仅如此,课件、视频、Julia实现代码等配套学习资源也特别到位。


课程主题

课程官网发布了课程主题,ShowMeAI 对其进行了翻译。

  • Linear functions(线性函数
  • Intro to Julia Tutorial(Julia 入门教程
  • Norm and distance(范数与距离度量
  • Clustering(聚类
  • Linear independence(线性无关
  • Matrices(矩阵
  • Linear equations(线性方程
  • Linear dynamical systems(线性动态系统
  • Matrix multiplication(矩阵乘法
  • Matrix inverses(逆矩阵
  • Regression(回归
  • Least squares classification(最小二乘法
  • Multi-objective least squares(多目标最小二乘
  • Constrained least squares(受约束的最小二乘


课程资料 | 下载

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

扫描上方图片二维码,关注公众号并回复关键字 🎯『ENGR108』,就可以获取整理完整的资料合辑啦!当然也可以点击 🎯 这里 查看更多课程的资料获取方式!

ENGR108; Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares; 线性代数与矩阵方法导论

课程面向全网,开发了全套课程资料。ShowMeAI 对课程资料进行了梳理,整理成这份完备且清晰的资料包:

  • 📚 e-book:课程对应的电子书。
  • 📚 课件:Chapter 1-19的所有课件PDF版本。
  • 📚 作业: Stephen Boyd (课程讲师) 和 Lieven Vandenberghe 整理的课程练习题,共20多页,21章。

还有比这更适合学习的么!学起来吧朋友们,四舍五入我们也算是Stanford的学生了!


课程视频 | B站

🌍 B站 | 【双语字幕+资料下载】斯坦福ENGR108 | 矩阵论与应用线性代数(2020·完整版)

ShowMeAI 将视频上传至B站,并增加了中英双语字幕,以提供更加友好的学习体验。点击页面视频,可以进行预览。推荐前往 👆 B站 观看完整课程视频哦!


全球名校AI课程合辑

作者ShowMeAI内容团队
阅读原文https://www.showmeai.tech/article-detail/346

e9190f41b8de4af38c8a1a0c96f0513b~tplv-k3u1fbpfcp-zoom-1.image

目录
相关文章
|
14天前
|
机器学习/深度学习 人工智能 数据可视化
何恺明CV课程 | AI大咖说
麻省理工学院(MIT)电气工程与计算机科学系(EECS)副教授何恺明开设了两门精彩课程:“Advance in Computer Vision”和“Deep Generative Models”。何恺明是计算机视觉和深度学习领域的杰出科学家,曾提出深度残差网络(ResNet)等重要成果。这两门课程不仅涵盖了最新的研究前沿,还由何恺明亲自授课,内容涉及卷积神经网络、生成对抗网络、变分自编码器等,是学习计算机视觉和生成模型的宝贵资源。
53 8
|
1月前
|
人工智能 算法 前端开发
首个 AI 编程认证课程上线!阿里云 AI Clouder 认证:基于通义灵码实现高效 AI 编码
为了帮助企业和开发者更好使用通义灵码,阿里云上线了“AI Clouder 认证课程--基于通义灵码实现高效 AI 编码”。本课程汇聚了后端、前端、算法领域 5 名实战派专家,带你体验 4 大研发场景实践,上手 3 大实操演练,深度掌握智能编码助手通义灵码,实现全栈 AI 编码技能跃升。
|
1月前
|
人工智能 算法 前端开发
首个 AI 编程认证课程上线!阿里云 AI Clouder 认证:基于通义灵码实现高效 AI 编码
为了帮助企业和开发者更好使用通义灵码,阿里云上线了“AI Clouder 认证课程--基于通义灵码实现高效 AI 编码”。本课程汇聚了后端、前端、算法领域 5 名实战派专家,带你体验 4 大研发场景实践,上手 3 大实操演练,深度掌握智能编码助手通义灵码,实现全栈 AI 编码技能跃升。
|
3月前
|
机器学习/深度学习 人工智能 数据可视化
10个用于可解释AI的Python库
10个用于可解释AI的Python库
|
3月前
|
存储 机器学习/深度学习 人工智能
【AI大模型】Transformers大模型库(十六):safetensors存储类型
【AI大模型】Transformers大模型库(十六):safetensors存储类型
172 0
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
37 1
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。
|
6天前
|
存储 人工智能 搜索推荐
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
Memoripy 是一个 Python 库,用于管理 AI 应用中的上下文感知记忆,支持短期和长期存储,兼容 OpenAI 和 Ollama API。
35 6
Memoripy:支持 AI 应用上下文感知的记忆管理 Python 库
|
1天前
|
机器学习/深度学习 人工智能 算法
强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用
本文探讨了强化学习在游戏AI中的应用,从基本原理、优势、应用场景到具体实现方法,以及Python在其中的作用,通过案例分析展示了其潜力,并讨论了面临的挑战及未来发展趋势。强化学习正为游戏AI带来新的可能性。
18 4

热门文章

最新文章

下一篇
无影云桌面