【微服务六】Ribbon负载均衡策略之轮询(RoundRobinRule)、重试(RetryRule)

本文涉及的产品
云原生网关 MSE Higress,422元/月
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 【微服务六】Ribbon负载均衡策略之轮询(RoundRobinRule)、重试(RetryRule)

@[TOC]

一、前言

前置Ribbon相关文章:

  1. 【云原生&微服务一】SpringCloud之Ribbon实现负载均衡详细案例(集成Eureka、Ribbon)
  2. 【云原生&微服务二】SpringCloud之Ribbon自定义负载均衡策略(含Ribbon核心API)
  3. 【云原生&微服务三】SpringCloud之Ribbon是这样实现负载均衡的(源码剖析@LoadBalanced原理)
  4. 【云原生&微服务四】SpringCloud之Ribbon和Erueka集成的细节全在这了(源码剖析)
  5. 【微服务五】Ribbon随机负载均衡算法如何实现的

我们聊了以下问题:

  1. 为什么给RestTemplate类上加上了@LoadBalanced注解就可以使用Ribbon的负载均衡?
  2. SpringCloud是如何集成Ribbon的?
  3. Ribbon如何作用到RestTemplate上的?
  4. 如何获取到Ribbon的ILoadBalancer?
  5. ZoneAwareLoadBalancer(属于ribbon)如何与eureka整合,通过eureka client获取到对应注册表?
  6. ZoneAwareLoadBalancer如何持续从Eureka中获取最新的注册表信息?
  7. 如何根据负载均衡器ILoadBalancer从Eureka Client获取到的List<Server>中选出一个Server?
  8. Ribbon如何发送网络HTTP请求?
  9. Ribbon如何用IPing机制动态检查服务实例是否存活?
  10. Ribbon负载均衡策略之随机(RandomRule)实现方式;

本文继续讨论 轮询(RoundRobinRule)、重试(RetryRule)是如何实现的?

PS:Ribbon依赖Spring Cloud版本信息如下:

<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-dependencies</artifactId>
            <version>2.3.7.RELEASE</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
        <!--整合spring cloud-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-dependencies</artifactId>
            <version>Hoxton.SR8</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
        <!--整合spring cloud alibaba-->
        <dependency>
            <groupId>com.alibaba.cloud</groupId>
            <artifactId>spring-cloud-alibaba-dependencies</artifactId>
            <version>2.2.5.RELEASE</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

二、轮询算法 --> RoundRobinRule

我们知道Ribbon负载均衡算法体现在IRule的choose(Object key)方法中,而choose(Object key)方法中又会调用choose(ILoadBalancer lb, Object key)方法,所以我们只需要看各个IRule实现类的choose(ILoadBalancer lb, Object key)方法;
在这里插入图片描述
随机算法体现在RoundRobinRule#incrementAndGetModulo()方法:

private AtomicInteger nextServerCyclicCounter;

private int incrementAndGetModulo(int modulo) {
    // 死循环直到获取到一个索引下标
    for (;;) {
        // 获取当前AtomicInteger类型变量的原子值
        int current = nextServerCyclicCounter.get();
        // 当前原子值 + 1 然后对 服务实例个数取余
        int next = (current + 1) % modulo;
        // CAS修改AtomicInteger类型变量,CAS成功返回next,否则无限重试
        if (nextServerCyclicCounter.compareAndSet(current, next))
            return next;
    }
}
轮询算法很简单,重点在于通过AtomicInteger原子类型变量 + 死循环 CAS操作实现,每次返回 原子类型变量的当前值 + 1,因为原子类型变量可能超过服务实例数,所以每次对原子类型变量赋值时,都会对其和服务实例总数 做取余运算

三、重试算法 --> RetryRule

进入RetryRule的choose(ILoadBalancer lb, Object key)方法;
在这里插入图片描述

方法的核心逻辑:

  1. 首先记录开始要选择一个服务实例时的时间(即:开始请求时间为当前时间),和允许获取到服务实例的deadline,deadline为当前时间 + 500ms
  2. 接着使用RetryRule组合的RoundRobinRule轮询选择一个服务实例;
  3. 如果选择的服务实例为空并且当前时间还没到deadline 或 选择的服务实例不是活着的并且当前时间还没到deadline,则进行重试、重新获取一个服务实例;
  4. 重试之前会先启动一个延时(deadline-当前时间)执行的定时任务,其中负责到deadline时中断当前线程;
  5. 死循环(当前线程不是中断状态时),调用RoundRobin算法选择一个服务实例,如果这个服务实例是有效的 或 当前时间过了截止时间,则跳出循坏;并取消上面新建的延时执行的定时任务,返回当前实例;
  6. 如果服务实例不是活着的并且当前时间在截止时间之内,则调用Thread.yield(),让出线程资源,使当前线程 或 相同优先级的其他线程可以获取运行机会,也就是说 yield的线程有可能被线程调度程序再次选中执行。

所以:RetryRule在subRule.choose(String)获得无效的服务实例后,会一直重试,但重试次数取决于重试的deadline当前线程相同优先级的其他线程个数

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
2月前
|
负载均衡 Java Nacos
Ribbon负载均衡
Ribbon负载均衡
36 1
Ribbon负载均衡
|
30天前
|
算法 NoSQL Java
微服务架构下的接口限流策略与实践#### 一、
本文旨在探讨微服务架构下,面对高并发请求时如何有效实施接口限流策略,以保障系统稳定性和服务质量。不同于传统的摘要概述,本文将从实际应用场景出发,深入剖析几种主流的限流算法(如令牌桶、漏桶及固定窗口计数器等),通过对比分析它们的优缺点,并结合具体案例,展示如何在Spring Cloud Gateway中集成自定义限流方案,实现动态限流规则调整,为读者提供一套可落地的实践指南。 #### 二、
55 3
|
30天前
|
监控 安全 持续交付
构建高效微服务架构:策略与实践####
在数字化转型的浪潮中,微服务架构凭借其高度解耦、灵活扩展和易于维护的特点,成为现代企业应用开发的首选。本文深入探讨了构建高效微服务架构的关键策略与实战经验,从服务拆分的艺术到通信机制的选择,再到容器化部署与持续集成/持续部署(CI/CD)的实践,旨在为开发者提供一套全面的微服务设计与实现指南。通过具体案例分析,揭示如何避免常见陷阱,优化系统性能,确保系统的高可用性与可扩展性,助力企业在复杂多变的市场环境中保持竞争力。 ####
43 2
|
2月前
|
消息中间件 运维 Cloud Native
云原生架构下的微服务优化策略####
本文深入探讨了云原生环境下微服务架构的优化路径,针对服务拆分、通信效率、资源管理及自动化运维等核心环节提出了具体的优化策略。通过案例分析与最佳实践分享,旨在为开发者提供一套系统性的解决方案,以应对日益复杂的业务需求和快速变化的技术挑战,助力企业在云端实现更高效、更稳定的服务部署与运营。 ####
|
2月前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
56 5
|
2月前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
2月前
|
Kubernetes 负载均衡 Cloud Native
云原生架构下的微服务治理策略
随着云原生技术的不断成熟,微服务架构已成为现代应用开发的主流选择。本文探讨了在云原生环境下实施微服务治理的策略和方法,重点分析了服务发现、负载均衡、故障恢复和配置管理等关键技术点,以及如何利用Kubernetes等容器编排工具来优化微服务的部署和管理。文章旨在为开发者提供一套实用的微服务治理框架,帮助其在复杂的云环境中构建高效、可靠的分布式系统。
35 5
|
2月前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型浪潮中,企业纷纷拥抱云计算,而云原生架构作为其核心技术支撑,正引领着一场深刻的技术变革。本文聚焦于云原生环境下微服务架构的治理策略与实践,探讨如何通过精细化的服务管理、动态的流量调度、高效的故障恢复机制以及持续的监控优化,构建弹性、可靠且易于维护的分布式系统。我们将深入剖析微服务治理的核心要素,结合具体案例,揭示其在提升系统稳定性、扩展性和敏捷性方面的关键作用,为读者提供一套切实可行的云原生微服务治理指南。 ####
|
2月前
|
负载均衡 算法 Java
除了 Ribbon,Spring Cloud 中还有哪些负载均衡组件?
这些负载均衡组件各有特点,在不同的场景和需求下,可以根据项目的具体情况选择合适的负载均衡组件来实现高效、稳定的服务调用。
112 5
|
28天前
|
Cloud Native API 持续交付
云原生架构下的微服务治理策略与实践####
本文旨在探讨云原生环境下微服务架构的治理策略,通过分析当前面临的挑战,提出一系列实用的解决方案。我们将深入讨论如何利用容器化、服务网格(Service Mesh)等先进技术手段,提升微服务系统的可管理性、可扩展性和容错能力。此外,还将分享一些来自一线项目的经验教训,帮助读者更好地理解和应用这些理论到实际工作中去。 ####
40 0