【云原生&微服务五】Ribbon负载均衡策略之随机ThreadLocalRandom

本文涉及的产品
服务治理 MSE Sentinel/OpenSergo,Agent数量 不受限
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,118元/月
简介: 【云原生&微服务五】Ribbon负载均衡策略之随机ThreadLocalRandom

@[toc]

一、前言

在前面的Ribbon系列文章:

  1. 【云原生&微服务一】SpringCloud之Ribbon实现负载均衡详细案例(集成Eureka、Ribbon)
  2. 【云原生&微服务二】SpringCloud之Ribbon自定义负载均衡策略(含Ribbon核心API)
  3. 【云原生&微服务三】SpringCloud之Ribbon是这样实现负载均衡的(源码剖析@LoadBalanced原理)
  4. 【云原生&微服务四】SpringCloud之Ribbon和Erueka集成的细节全在这了(源码剖析)

我们聊了以下问题:

  1. 为什么给RestTemplate类上加上了@LoadBalanced注解就可以使用Ribbon的负载均衡?
  2. SpringCloud是如何集成Ribbon的?
  3. Ribbon如何作用到RestTemplate上的?
  4. 如何获取到Ribbon的ILoadBalancer?
  5. ZoneAwareLoadBalancer(属于ribbon)如何与eureka整合,通过eureka client获取到对应注册表?
  6. ZoneAwareLoadBalancer如何持续从Eureka中获取最新的注册表信息?
  7. 如何根据负载均衡器ILoadBalancer从Eureka Client获取到的List<Server>中选出一个Server?
  8. Ribbon如何发送网络HTTP请求?
  9. Ribbon如何用IPing机制动态检查服务实例是否存活?

本篇文章我们继续看Ribbon内置了哪些负载均衡策略?RandomRule负载均衡策略的算法是如何实现的?

PS:Ribbon依赖Spring Cloud版本信息如下:

<dependencyManagement>
    <dependencies>
        <dependency>
            <groupId>org.springframework.boot</groupId>
            <artifactId>spring-boot-dependencies</artifactId>
            <version>2.3.7.RELEASE</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
        <!--整合spring cloud-->
        <dependency>
            <groupId>org.springframework.cloud</groupId>
            <artifactId>spring-cloud-dependencies</artifactId>
            <version>Hoxton.SR8</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
        <!--整合spring cloud alibaba-->
        <dependency>
            <groupId>com.alibaba.cloud</groupId>
            <artifactId>spring-cloud-alibaba-dependencies</artifactId>
            <version>2.2.5.RELEASE</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
    </dependencies>
</dependencyManagement>

二、Ribbon内置了哪些负载均衡算法?

  1. RandomRule --> 随机选择一个Server
  2. RoundRobinRule --> 轮询选择,轮询Index,选择index对应位置的Server,请求基本平摊到每个Server上。
  3. WeightedResponseTimeRule --> 根据响应时间加权,响应时间越长,权重越小,被选中的可能性越低。
  4. ZoneAvoidanceRule --> 综合判断Server所在Zone的性能和Server的可用性选择server,在没Zone的环境下,类似于轮询(RoundRobinRule)。默认策略
  5. BestAvailableRule --> 选择一个最小的并发请求的Server,逐个考察Server,如果Server被tripped了,则跳过。
  6. RetryRule --> 对选定的负载均衡策略上 重试机制,在一个配置时间段内选择Server不成功,就一直尝试使用subRule(默认是RoundRobinRule)的方式选择一个可用的Server。
  7. AvailabilityFilteringRule --> 过滤掉一直连接失败的(被标记为circuit tripped的)的Server,并过滤掉那些高并发的后端Server 或者 使用一个AvailabilityPredicate来定义过滤Server的逻辑,本质上就是检查status里记录的各个Server的运行状态;其具体逻辑如下:

    先用round robin算法,轮询依次选择一台server,如果判断这个server是否是存活的、可用的,如果这台server是不可以访问的,那么就用round robin算法再次选择下一台server,依次循环往复10次,还不行,就走RoundRobin选择。

三、随机算法 --> RandomRule

我们知道Ribbon负载均衡算法体现在IRule的choose(Object key)方法中,而choose(Object key)方法中又会调用choose(ILoadBalancer lb, Object key)方法,所以我们只需要看各个IRule实现类的choose(ILoadBalancer lb, Object key)方法;

在这里插入图片描述

PS:allList和upList的一些疑问和解惑!

最近和一个大V聊了一下RandomRule中Server的选择,随机的下标是以allList的size为基数,而Server的选择则是拿到随机数以upList为准;当时我们考虑极端情况可能存在越界问题!

当天晚上博主又追了一下Ribbon的整个执行流程,结论如下:

  1. upList和allList是Ribbon维护在自己内存的,在服务启动时会从服务注册中心把服务实例信息拉到upList和allList;
  2. 后续无论是通过ping机制还是每30s从注册中心拉取全量服务实例列表,

但凡all list发生变更,都会触发一个事件,然后修改本地内存的up list。

  1. 另外默认ping机制并不会定时每10s执行,因为默认的IPing实现是DummyPing,而BaseLoadBalancer#canSkipPing()里会判断IPing实现是DummyPing则不启动Timer定时做Ping机制。

Eureka和Ribbon整合之后,EurekaRibbonClientConfiguration(spring-cloud-netflix-eureka-client包下)类中新定义了一个IPing(NIWSDiscoveryPing),此时会启动Timer每10s做一次ping操作。

随机算法体现在RandomRule#chooseRandomInt()方法:
在这里插入图片描述
然而,chooseRandomInt()方法中居然使用的不是Random,而是ThreadLocalRandom,并直接使用ThreadLocalRandom#nextInt(int)方法获取某个范围内的随机值,ThreadLocalRandom是个什么东东?

1、ThreadLocalRandom详解

在这里插入图片描述
ThreadLocalRandom位于JUC(java.util.concurrent)包下,继承自Random。

1)为什么不用Random?

从Java1.0开始,java.util.Random就已经存在,其是一个线程安全类,多线程环境下,科通通过它获取到线程之间互不相同的随机数,其线程安全性是通过原子类型AtomicLong的变量seed + CAS实现的。

在这里插入图片描述

尽管Random使用 CAS 操作来更新它原子类型AtomicLong的变量seed,并且在很多非阻塞式算法中使用了非阻塞式原语,但是CAS在资源高度竞争时的表现依然糟糕。

2)ThreadLocalRandom的诞生?

JAVA7在JUC包下增加了该类,意在将它和Random结合以克服Random中的CAS性能问题;
虽然可以使用ThreadLocal<Random>来避免线程竞争,但是无法避免CAS 带来的开销;考虑到性能诞生了ThreadLocalRandom;ThreadLocalRandom不是ThreadLocal包装后的Random,而是真正的使用ThreadLocal机制重新实现的Random。

ThreadLocalRandom的核心实现细节:

  1. 使用一个普通long类型的变量SEED替换Random中的AtomicLong类型的seed
  2. 不能同构构造函数创建ThreadLocalRandom实例,因为它的构造函数是私有的,要使用静态工厂ThreadLocalRandom.current()
  3. 它是CPU缓存感知式的,使用8个long虚拟域来填充64位L1高速缓存行

3)ThreadLocalRandom的错误使用场景

1> 代码示例:

package com.saint.random;

import java.util.concurrent.ThreadLocalRandom;

/**
 * @author Saint
 */
public class ThreadLocalRandomTest {

    private static final ThreadLocalRandom RANDOM =
            ThreadLocalRandom.current();

    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            new SonThread().start();
        }
    }

    private static class SonThread extends Thread {
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + " obtain random value is : " + RANDOM.nextInt(100));
        }
    }
}

2> 运行结果:

在这里插入图片描述

  • 居然每个线程获取到的随机值都是一样的!!!

3> 运行结果分析:

上述代码中之所以每个线程获取到的随机值都是一样,因为:

  1. ThreadLocalRandom 类维护了一个类单例字段,线程通过调用 ThreadLocalRandom#current() 方法来获取 ThreadLocalRandom单例对象;然后以线程维护的实例字段 threadLocalRandomSeed 为种子生成下一个随机数和下一个种子值;
  2. 线程在调用 current() 方法的时候,会根据用每个线程 thread 的一个实例字段 threadLocalRandomProbe 是否为 0 来判断当前线程实例是是第一次调用随机数生成方法,进而决定是否要给当前线程初始化一个随机的 threadLocalRandomSeed 种子值。
  3. 所以,如果其他线程绕过 current() 方法直接调用随机数方法(比如nextInt()),那么它的种子值就是可预测的,即一样的。

4)ThreadLocalRandom的正确使用方式

每次要获取随机数时,调用ThreadLocalRandom的正确使用方式是ThreadLocalRandom.current().nextX(int)

public class ThreadLocalRandomTest {

    public static void main(String[] args) {
        for (int i = 0; i < 10; i++) {
            new SonThread().start();
        }
    }

    private static class SonThread extends Thread {
        @Override
        public void run() {
            System.out.println(Thread.currentThread().getName() + " obtain random value is : " + ThreadLocalRandom.current().nextInt(100));
        }
    }
}

运行结果如下:

在这里插入图片描述

5)ThreadLocalRandom源码解析

1> nextInt(int bound)方法获取随机值

public int nextInt(int bound) {
    if (bound <= 0)
        throw new IllegalArgumentException(BadBound);
    // 1. 使用当前种子值SEED获取新种子值,mix32()可以看到是一个扰动函数
    int r = mix32(nextSeed());
    int m = bound - 1;
    // 2. 使用新种子值获取随机数
    if ((bound & m) == 0) // power of two
        r &= m;
    else { // reject over-represented candidates
        for (int u = r >>> 1;
             u + m - (r = u % bound) < 0;
             u = mix32(nextSeed()) >>> 1)
            ;
    }
    return r;
}

当bound=100时,代码执行如下:

在这里插入图片描述
在这里插入图片描述

2> nextSeed()方法获取下一个种子值

final long nextSeed() {
    Thread t; long r; // read and update per-thread seed
    //r = UNSAFE.getLong(t, SEED) 获取当前线程中对应的SEED值
    UNSAFE.putLong(t = Thread.currentThread(), SEED,
                   r = UNSAFE.getLong(t, SEED) + GAMMA);
    return r;
}
nextSeed()方法中首先使用 基于主内存地址的Volatile读的方式获取老的SEED种子值,然后再使用 基于主内存地址的Volatile写的方式设置新的SEED种子值;

种子值相关常量:

// Unsafe mechanics
private static final sun.misc.Unsafe UNSAFE;
// 种子值
private static final long SEED;
private static final long PROBE;
private static final long SECONDARY;
static {
    try {
        UNSAFE = sun.misc.Unsafe.getUnsafe();
        Class<?> tk = Thread.class;
        SEED = UNSAFE.objectFieldOffset
            (tk.getDeclaredField("threadLocalRandomSeed"));
        PROBE = UNSAFE.objectFieldOffset
            (tk.getDeclaredField("threadLocalRandomProbe"));
        SECONDARY = UNSAFE.objectFieldOffset
            (tk.getDeclaredField("threadLocalRandomSecondarySeed"));
    } catch (Exception e) {
        throw new Error(e);
    }
}

3> 总述

  1. ThreadLocalRandom中直接基于主内存地址的Volatile读方式读取老SEED值。
  2. ThreadLocalRandom中直接基于主内存地址的Volatile写方式将老SEED值替换为新SEED值;因为这里的种子值都是线程级别的,所以不需要原子级别的变量,也不会出现多线程竞争修改种子值的情况。

谈到基于主内存地址的Volatile读写,ConCurrentHashMap中也有大量使用,参考博文:https://blog.csdn.net/Saintmm/article/details/122911586

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
1月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
1月前
|
运维 负载均衡 监控
深入探索微服务架构的核心要素与实践策略
在当今软件开发领域,微服务架构已成为构建灵活、可扩展企业级应用的首选模式。本文旨在剖析微服务架构的设计理念,通过实例阐述其核心组件如服务注册与发现、配置管理、熔断机制等如何协同工作,以提升系统的敏捷性和维护性。同时,探讨了在实践中应对分布式系统复杂性的最佳策略,包括负载均衡、服务监控和日志聚合等关键技术,旨在为后端开发者提供一套完整的微服务实施指南。
45 1
|
2天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型加速的今天,云原生技术以其高效、灵活、可扩展的特性成为企业IT架构转型的首选。本文深入探讨了云原生环境下微服务治理的策略与实践路径,旨在为读者提供一个系统性的微服务治理框架,涵盖从服务设计、部署、监控到运维的全生命周期管理,助力企业在云端构建更加稳定、高效的业务系统。 ####
|
19天前
|
监控 测试技术 API
如何确保微服务的API版本控制策略能够适应不断变化的业务需求?
如何确保微服务的API版本控制策略能够适应不断变化的业务需求?
|
1月前
|
监控 测试技术 API
如何确保微服务的API版本控制策略能够适应不断变化的业务需求
如何确保微服务的API版本控制策略能够适应不断变化的业务需求
52 10
|
1月前
|
监控 安全 API
深入探索微服务架构的核心要素与实践策略
在当今软件开发领域,微服务架构以其独特的优势——高度的模块化、灵活性以及可扩展性,已经成为构建复杂、大型应用系统的不二选择。不同于传统的单体架构,它能够显著提升开发效率,促进技术生态的多样化发展。本文将从微服务架构的核心特性出发,探讨其设计理念、关键技术及在实践中的应用策略,旨在为后端开发者提供一份详尽的指南,帮助他们理解和掌握这一现代软件架构的精髓。
25 3
|
1月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与实践
随着微服务架构的普及,如何高效管理和优化数据库访问成为了关键挑战。本文探讨了在微服务环境中优化数据库访问的策略,包括数据库分片、缓存机制、异步处理等技术手段。通过深入分析实际案例和最佳实践,本文旨在为开发者提供实际可行的解决方案,以提升系统性能和可扩展性。
|
1月前
|
运维 监控 Cloud Native
云原生时代的运维策略:从反应式到自动化
在云计算的浪潮下,运维领域经历了翻天覆地的变化。本文将带你领略云原生时代下的运维新风貌,探索如何通过自动化和智能化手段,实现从传统的反应式运维向主动、智能的运维模式转变。我们将一起见证,这一变革如何助力企业提升效率,保障服务的连续性与安全性,以及运维人员如何适应这一角色的转变,成为云原生时代的引领者。
39 8
|
1月前
|
负载均衡 Java Nacos
SpringCloud基础1——远程调用、Eureka,Nacos注册中心、Ribbon负载均衡
微服务介绍、SpringCloud、服务拆分和远程调用、Eureka注册中心、Ribbon负载均衡、Nacos注册中心
SpringCloud基础1——远程调用、Eureka,Nacos注册中心、Ribbon负载均衡
|
28天前
|
负载均衡 Java 开发者
Ribbon框架实现客户端负载均衡的方法与技巧
Ribbon框架为微服务架构中的客户端负载均衡提供了强大的支持。通过简单的配置和集成,开发者可以轻松地在应用中实现服务的发现、选择和负载均衡。适当地使用Ribbon,配合其他Spring Cloud组件,可以有效提升微服务架构的可用性和性能。
26 0