sentence_transformers模型无法直接下载的解决方案

简介: 本文介绍使用sentence_transformers包(官网:https://huggingface.co/sentence-transformers)时,直接调用模型名称无法下载模型的解决方案。其实跟transformers包差不多,都是把文件下载到本地然后直接使用路径加载模型。

一开始我用的代码是:

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('all-MiniLM-L6-v2')


好几次都在下载了一小部分之后失败了。


所以改为提前将模型下载到本地(wget稳定性更强,可以无限retry,我下pytorch_model.bin重试了8次):

  1. 这个模型的网址很容易找到:https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2
  2. 挨个下载文件到本地:
mkdir /data/pretrained_model/all-MiniLM-L6-v2
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/config.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/pytorch_model.bin
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/data_config.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/config_sentence_transformers.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/modules.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/sentence_bert_config.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/special_tokens_map.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/tokenizer.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/tokenizer_config.json
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/train_script.py
wget -P /data/pretrained_model/all-MiniLM-L6-v2 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/vocab.txt
mkdir /data/pretrained_model/all-MiniLM-L6-v2/1_Pooling
wget -P /data/pretrained_model/all-MiniLM-L6-v2/1_Pooling https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2/resolve/main/1_Pooling/config.json


然后代码直接改成:

from sentence_transformers import SentenceTransformer
model = SentenceTransformer('/data/pretrained_model/all-MiniLM-L6-v2')


其他一切不变即可。

目录
打赏
0
0
0
0
20
分享
相关文章
NLP-基于bertopic工具的新闻文本分析与挖掘
这篇文章介绍了如何使用Bertopic工具进行新闻文本分析与挖掘,包括安装Bertopic库、加载和预处理数据集、建立并训练主题模型、评估模型性能、分类新闻标题、调优聚类结果的详细步骤和方法。
NLP-基于bertopic工具的新闻文本分析与挖掘
Qwen2.5-7B-Instruct Lora 微调
本教程介绍如何基于Transformers和PEFT框架对Qwen2.5-7B-Instruct模型进行LoRA微调。
8066 34
Qwen2.5-7B-Instruct Lora 微调
【Python】已解决:nltk.download(‘punkt’) [nltk_data] Error loading punkt: [WinError 10060] [nltk_data]
【Python】已解决:nltk.download(‘punkt’) [nltk_data] Error loading punkt: [WinError 10060] [nltk_data]
3015 1
huggingface_hub.utils._validators.HFValidationError: Repo id must be in the form ‘repo_name‘ or ‘nam
这篇文章介绍了在使用HuggingFace模型库时遇到的`Repo id`格式错误问题,并提供了将相对路径改为正确的绝对路径的解决办法。
一文详解几种常见本地大模型个人知识库工具部署、微调及对比选型(1)
近年来,大模型在AI领域崭露头角,成为技术创新的重要驱动力。从AlphaGo的胜利到GPT系列的推出,大模型展现出了强大的语言生成、理解和多任务处理能力,预示着智能化转型的新阶段。然而,要将大模型的潜力转化为实际生产力,需要克服理论到实践的鸿沟,实现从实验室到现实世界的落地应用。阿里云去年在云栖大会上发布了一系列基于通义大模型的创新应用,标志着大模型技术开始走向大规模商业化和产业化。这些应用展示了大模型在交通、电力、金融、政务、教育等多个行业的广阔应用前景,并揭示了构建具有行业特色的“行业大模型”这一趋势,大模型知识库概念随之诞生。
152092 30
NLTK模块使用详解
NLTK(Natural Language Toolkit)是基于Python的自然语言处理工具集,提供了丰富的功能和语料库。本文详细介绍了NLTK的安装、基本功能、语料库加载、词频统计、停用词去除、分词分句、词干提取、词形还原、词性标注以及WordNet的使用方法。通过示例代码,帮助读者快速掌握NLTK的核心功能。
1582 1
模块化RAG技术路线图:从基础Naive RAG 到Modular RAG全方位技术解读
【8月更文挑战第12天】模块化RAG技术路线图:从基础Naive RAG 到Modular RAG全方位技术解读
1997 9
模块化RAG技术路线图:从基础Naive RAG 到Modular RAG全方位技术解读
langchain 入门指南 - 让 AI 记住你说过的话
langchain 入门指南 - 让 AI 记住你说过的话
319 1
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问