关于为什么有了通用BERT,却还需要特定领域BERT?-对此问题做出回答的相关理论和文章(如有)(持续更新ing...)

简介: 关于为什么有了通用BERT,却还需要特定领域BERT?-对此问题做出回答的相关理论和文章(如有)(持续更新ing...)

1. 空间论


不同类型的语料所覆盖的空间会不一样,训练出来的模型理论上应该是对训练集所覆盖的空间的测试集的泛化效果更好,而如果你用的是特定语料的bert,但是你想测试其他领域的余料的话,它的泛化性就会弱。


2. 知识论


预训练语言模型能学习到语料中的知识,而通用语料缺乏特定领域的知识,因此直接用通用BERT难以解决需要专业知识的特定领域的问题。

(可以参考:LawBERT: Towards a Legal Domain-Specific BERT? | by Erin Zhang | Towards Data Science)


3. 典型的特定领域BERT


生物医学:BioBERT

科学出版物:SciBERT

金融:FinBERT

医学:ClinicalBERT

法律:LegalBERT

相关文章
|
机器学习/深度学习 人工智能 自然语言处理
一文尽览 | 开放世界目标检测的近期工作及简析!(基于Captioning/CLIP/伪标签/Prompt)(上)
人类通过自然监督,即探索视觉世界和倾听他人描述情况,学会了毫不费力地识别和定位物体。我们人类对视觉模式的终身学习,并将其与口语词汇联系起来,从而形成了丰富的视觉和语义词汇,不仅可以用于检测物体,还可以用于其他任务,如描述物体和推理其属性和可见性。人类的这种学习模式为我们实现开放世界的目标检测提供了一个可以学习的角度。
一文尽览 | 开放世界目标检测的近期工作及简析!(基于Captioning/CLIP/伪标签/Prompt)(上)
|
机器学习/深度学习 自然语言处理 算法
文本摘要(text summarization)任务:研究范式,重要模型,评估指标(持续更新ing...)
本文是作者在学习文本摘要任务的过程中,根据学习资料总结逐步得到并整理为成文的相关内容。相关学习资料(包括论文、博文、视频等)都会以脚注等形式标明。有一些在一篇内会导致篇幅过长的内容会延伸到其他博文中撰写,但会在本文中提供超链接。 本文将主要列举里程碑式的重要文本摘要论文。 注意:除文首的表格外,本文所参考的论文,如本人已撰写对应的学习博文,则不直接引用原论文,而引用我撰写的博文。 本文会长期更新。
文本摘要(text summarization)任务:研究范式,重要模型,评估指标(持续更新ing...)
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
【LangChain系列】第五篇:大语言模型中的提示词,模型及输出简介及实践
【5月更文挑战第19天】LangChain是一个Python库,简化了与大型语言模型(LLM)如GPT-3.5-turbo的交互。通过ChatOpenAI类,开发者可以创建确定性输出的应用。提示词是指导LLM执行任务的关键,ChatPromptTemplate允许创建可重用的提示模板。输出解析器如StructuredOutputParser将模型的响应转化为结构化数据,便于应用处理。LangChain提供可重用性、一致性、可扩展性,并有一系列预建功能。它使得利用LLM构建复杂、直观的应用变得更加容易。
317 0
|
自然语言处理 机器人 API
GPT学术优化 (GPT Academic):支持一键润色、一键中英互译、一键代码解释、chat分析报告生成、PDF论文全文翻译功能、互联网信息聚合+GPT等等
GPT学术优化 (GPT Academic):支持一键润色、一键中英互译、一键代码解释、chat分析报告生成、PDF论文全文翻译功能、互联网信息聚合+GPT等等
|
7月前
|
自然语言处理 Python
BERT模型基本理念、工作原理、配置讲解(图文解释)
BERT模型基本理念、工作原理、配置讲解(图文解释)
904 0
|
机器学习/深度学习 自然语言处理 算法
【网安AIGC专题10.25】论文7:Chatgpt/CodeX引入会话式 APR 范例+利用验证反馈+LLM 长期上下文窗口:更智能的反馈机制、更有效的信息合并策略、更复杂的模型结构、鼓励生成多样性
【网安AIGC专题10.25】论文7:Chatgpt/CodeX引入会话式 APR 范例+利用验证反馈+LLM 长期上下文窗口:更智能的反馈机制、更有效的信息合并策略、更复杂的模型结构、鼓励生成多样性
146 0
|
机器人
第一个超越ChatGPT的开源模型来了?网友并不买账
第一个超越ChatGPT的开源模型来了?网友并不买账
341 1
|
机器学习/深度学习 自然语言处理 算法
收藏!编码器中如何融入结构信息?这几篇论文一定不要错过
收藏!编码器中如何融入结构信息?这几篇论文一定不要错过
|
机器学习/深度学习 数据可视化 计算机视觉
Google新作 | 详细解读 Transformer那些有趣的特性(建议全文背诵)(一)
Google新作 | 详细解读 Transformer那些有趣的特性(建议全文背诵)(一)
127 0
|
机器学习/深度学习 数据挖掘 计算机视觉
Google新作 | 详细解读 Transformer那些有趣的特性(建议全文背诵)(二)
Google新作 | 详细解读 Transformer那些有趣的特性(建议全文背诵)(二)
133 0