Python 并发编程之死锁(上)

简介: 在这一节中,我们将讨论一个思想实验,通常被称为餐饮哲学家问题,以说明死锁的概念及其原因;从这里开始,你将学习如何在 Python 并发程序中模拟这个问题。

前言

在并发编程中,死锁指的是一种特定的情况,即无法取得进展,程序被锁定在其当前状态。在大多数情况下,这种现象是由于不同的锁对象(用于线程同步)之间缺乏协调,或者处理不当造成的。在这一节中,我们将讨论一个思想实验,通常被称为餐饮哲学家问题,以说明死锁的概念及其原因;从这里开始,你将学习如何在 Python 并发程序中模拟这个问题。

哲学家就餐问题

哲学家就餐(Dining philosophers problem)问题是计算机科学中的一个经典问题,用来演示在并发计算中多线程同步时产生的问题。


在 1971 年,著名的计算机科学家艾兹格·迪科斯彻提出了一个同步问题,即假设有五台计算机都试图访问五份共享的磁带驱动器。稍后,这个问题被托尼·霍尔重新表述为哲学家就餐问题。这个问题可以用来解释死锁和资源耗尽


image.png


假如有 5 个哲学家,围坐在一起,每个人面前有一碗饭和一只筷子。在这里每个哲学家可以看做是一个独立的线程,而每只筷子可以看做是一个锁。


他们每个人都需要两个叉子来吃饭。如果他们同时拿起他们左边的叉子,那么它将一直等待右边的叉子被释放。每个哲学家可以处在静坐、 思考、吃饭三种状态中的一个。需要注意的是,每个哲学家吃饭是需要两只筷子的,这样问题就来了:如果每个哲学家都拿起自己左边的筷子, 那么他们五个都只能拿着一只筷子坐在那儿,直到饿死。此时他们就进入了死锁状态。


下面是一个简单的使用死锁避免机制解决“哲学家就餐问题”的实现:

import threading
# The philosopher thread
def philosopher(left, right):
    while True:
        with acquire(left,right):
             print(threading.currentThread(), 'eating')
# The chopsticks (represented by locks)
NSTICKS = 5
chopsticks = [threading.Lock() for n in range(NSTICKS)]
# Create all of the philosophers
for n in range(NSTICKS):
    t = threading.Thread(target=philosopher,
                         args=(chopsticks[n],chopsticks[(n+1) % NSTICKS]))
    t.start()


最后,要特别注意到,为了避免死锁,所有的加锁操作必须使用 acquire() 函数。如果代码中的某部分绕过 acquire 函数直接申请锁,那么整个死锁避免机制就不起作用了。

死锁的常见例子


另一个例子是在银行账户上:假如要在两个银行账户之间执行交易,你必须确保两个账户都被锁定,不受其他交易的影响,以达到正确的资金转移量。在这里,这个类比并不完全成立--哲学家对应的是锁定账户的交易(分叉)--但同样的技术困难也会出现。


其他的例子包括电商秒杀系统,多个用户抢一个商品,不允许一个数据库被多个客户同时修改。


死锁也是由一个并发程序需要同时具备的条件来定义的,这样才会发生死锁。这些条件是由计算机科学家 Edward G. Coffman, Jr .首先提出的,因此被称为 Coffman 条件。这些条件如下:

  • 至少有一个资源必须处于不可共享的状态。这意味着该资源被一个单独的进程(或线程)持有,不能被其他人访问; 在任何时间内,该资源只能被单个的进程(或线程)访问和持有。这个条件也被称为相互排斥
  • 有一个进程(或线程)同时访问一个资源并等待其他进程(或线程)持有的另一个资源。换句话说,这个进程(或线程)需要访问两个资源来执行其指令,其中一个它已经持有,另一个它正在等待其他进程(或线程)。这种情况被称为保持和等待
  • 只有在有特定指令让进程(或线程)释放资源的情况下,才能由持有这些资源的进程(或线程)来释放。这就是说,除非进程(或线程)自愿主动地释放资源,否则该资源仍处于不可共享的状态。这就是无抢占条件
  • 最后一个条件叫做循环等待。顾名思义,这个条件规定了一组进程(或线程)的存在,因此这组进程中的第一个进程(或线程)正在等待第二个进程(或线程)释放资源,而第二个进程(或线程)又需要等待第三个进程(或线程);最后,这组进程中的最后一个进程(或线程)正在等待第一个进程。


造成线程死锁的常见例子包括:


  1. 一个在自己身上等待的线程(例如,试图两次获得同一个互斥锁)
  2. 互相等待的线程(例如,A 等待 B,B 等待 A)
  3. 未能释放资源的线程(例如,互斥锁、信号量、屏障、条件、事件等)
  4. 线程以不同的顺序获取互斥锁(例如,未能执行锁排序)
相关文章
|
16天前
|
安全 开发者 Python
Python并发编程实践与性能优化
本文探讨了Python中并发编程的重要性及其实践方法,特别是在提升程序性能方面的应用。通过介绍多线程、多进程以及异步编程的基本概念和实现技巧,读者能够了解如何利用Python强大的并发特性来优化程序效率和响应速度。
|
1月前
|
并行计算 数据处理 Python
Python并发编程迷雾:IO密集型为何偏爱异步?CPU密集型又该如何应对?
【7月更文挑战第17天】Python并发编程中,异步编程(如`asyncio`)在IO密集型任务中提高效率,利用等待时间执行其他任务。但对CPU密集型任务,由于GIL限制,多线程效率不高,此时应选用`multiprocessing`进行多进程并行计算以突破限制。选择合适的并发策略是关键:异步适合IO,多进程适合CPU。理解这些能帮助构建高效并发程序。
33 6
|
1月前
|
开发框架 并行计算 .NET
从菜鸟到大神:Python并发编程深度剖析,IO与CPU的异步战争!
【7月更文挑战第18天】Python并发涉及多线程、多进程和异步IO(asyncio)。异步IO适合IO密集型任务,如并发HTTP请求,能避免等待提高效率。多进程在CPU密集型任务中更优,因可绕过GIL限制实现并行计算。通过正确选择并发策略,开发者能提升应用性能和响应速度。
40 3
|
1月前
|
数据处理 Python
深入探索:Python中的并发编程新纪元——协程与异步函数解析
【7月更文挑战第15天】Python 3.5+引入的协程和异步函数革新了并发编程。协程,轻量级线程,由程序控制切换,降低开销。异步函数是协程的高级形式,允许等待异步操作。通过`asyncio`库,如示例所示,能并发执行任务,提高I/O密集型任务效率,实现并发而非并行,优化CPU利用率。理解和掌握这些工具对于构建高效网络应用至关重要。
34 6
|
1月前
|
UED 开发者 Python
Python并发编程新纪元:异步编程如何重塑IO与CPU密集型任务的处理方式?
【7月更文挑战第18天】Python异步编程提升IO任务效率,非阻塞模式减少等待时间,优化用户体验。asyncio库与await关键字助力编写非阻塞代码,示例展示异步HTTP请求。CPU密集型任务中,异步编程结合多进程可提升效率。异步编程挑战包括代码复杂性,解决策略包括使用类型提示、异步框架及最佳实践。异步编程重塑任务处理方式,成为现代Python开发的关键。
26 2
|
1月前
|
数据采集 并行计算 数据处理
工具人必看:Python并发编程工具箱大揭秘,IO与CPU密集型任务的最佳拍档!
【7月更文挑战第16天】Python并发编程助力IO密集型(asyncio+aiohttp,异步Web爬虫示例)和CPU密集型(multiprocessing,并行计算数组和)任务。asyncio利用单线程异步IO提升Web应用效率,multiprocessing通过多进程克服GIL限制,实现多核并行计算。善用这些工具,可优化不同场景下的程序性能。
30 1
|
1月前
|
调度 Python
揭秘Python并发编程核心:深入理解协程与异步函数的工作原理
【7月更文挑战第15天】Python异步编程借助协程和async/await提升并发性能,减少资源消耗。协程(async def)轻量级、用户态,便于控制。事件循环,如`asyncio.get_event_loop()`,调度任务执行。异步函数内的await关键词用于协程间切换。回调和Future对象简化异步结果处理。理解这些概念能写出高效、易维护的异步代码。
25 2
|
16天前
|
数据采集 并行计算 程序员
Python中的并发编程:理解多线程与多进程
在Python编程中,理解并发编程是提升程序性能和效率的关键。本文将深入探讨Python中的多线程和多进程编程模型,比较它们的优劣势,并提供实际应用中的最佳实践与案例分析。
|
16天前
|
安全 大数据 Java
极限探索:Python中的并发编程技术
在Python编程世界中,实现高效的并发处理是追求极致性能的必经之路。本文将深入探讨Python中常用的并发编程技术,包括多线程、多进程和异步编程,揭示它们的优势、适用场景以及实现方法。通过对比分析不同技术的特点和局限性,帮助读者选择最适合其项目需求的并发策略,从而在应对大规模数据处理和高并发请求时达到最优效果。
|
29天前
|
数据采集 算法 数据处理
Python中的并发编程:异步IO与多线程对比分析
传统的多线程编程在Python中因为全局解释器锁(GIL)的存在受到限制,导致多线程并不能充分利用多核处理器的优势。本文将探讨Python中的异步IO编程与多线程编程的差异与优劣,并分析适合的应用场景。