python 实现k-means聚类算法 银行客户分组画像实战(超详细,附源码)

简介: python 实现k-means聚类算法 银行客户分组画像实战(超详细,附源码)

k-means具体是什么这里就不再赘述,详情可以参见我这篇博客


k-means


问题描述:银行对客户信息进行采集,获得了200位客户的数据,客户特征包括以下四个1:社保号码 2:姓名  3:年龄 4:存款数量 使用k-means算法对客户进行分组,生成各类型客户的特点画像


数据集请点赞关注收藏后私信博主要


肘部折线图如下  tips:利用肘部方法可以找到最佳的簇数,即看那个点之后逐渐收敛,则那个点为最优的簇数


由下图可以得知k=3或k=4时比较好

1666430149255.jpg

分类出的画像图如下,可以清楚的看出不同客户的画像

1666430163425.jpg





源码如下

#-*-coding:utf-8-*-
import  numpy  as np
import  matplotlib.pyplot as plt
import pandas as pd
import matplotlib; matplotlib.use('TkAgg')
dataset=pd.read_csv(r'Customer_Info.csv')
print(dataset)
X=dataset.iloc[:,[4,3]].values
from sklearn.cluster import  KMeans
sumDs=[]
for i in range(1,11):
    kmeans=KMeans(n_clusters=i)
    kmeans.fit(X)
    sumDs.append(kmeans.inertia_)
    print(kmeans.inertia_)
plt.plot(range(1,11),sumDs)
plt.title('the Elbow method')
plt.xlabel('number of cluster k')
plt.ylabel('SSE')
plt.show()
kmenas1=KMeans(n_clusters=3,init='k-means++',max_iter=300,n_init=10,random_state=0)
y_kmeans=kmenas1.fit_predict(X)
plt.scatter(X[y_kmeans==0,0],X[y_kmeans==0,1],s=100,marker='^',c='red',label='poor')
plt.scatter(X[y_kmeans==2,0],X[y_kmeans==2,1],s=100,marker='o',c='green',label='middle')
plt.scatter(X[y_kmeans==1,0],X[y_kmeans==1,1],s=100,marker='*',c='blue',label='rich')
plt.scatter(kmenas1.cluster_centers_[:,0],kmenas1.cluster_centers_[:,1],s=250,c='yellow',label='Centroids')
plt.title('clusters of customer info')
plt.xlabel('deposit')
plt.ylabel('age')
plt.legend()
plt.show()


相关文章
|
2月前
|
算法 搜索推荐 JavaScript
基于python智能推荐算法的全屋定制系统
本研究聚焦基于智能推荐算法的全屋定制平台网站设计,旨在解决消费者在个性化定制中面临的选择难题。通过整合Django、Vue、Python与MySQL等技术,构建集家装设计、材料推荐、家具搭配于一体的一站式智能服务平台,提升用户体验与行业数字化水平。
|
2月前
|
SQL 关系型数据库 数据库
Python SQLAlchemy模块:从入门到实战的数据库操作指南
免费提供Python+PyCharm编程环境,结合SQLAlchemy ORM框架详解数据库开发。涵盖连接配置、模型定义、CRUD操作、事务控制及Alembic迁移工具,以电商订单系统为例,深入讲解高并发场景下的性能优化与最佳实践,助你高效构建数据驱动应用。
297 7
|
2月前
|
存储 监控 算法
监控电脑屏幕的帧数据检索 Python 语言算法
针对监控电脑屏幕场景,本文提出基于哈希表的帧数据高效检索方案。利用时间戳作键,实现O(1)级查询与去重,结合链式地址法支持多条件检索,并通过Python实现插入、查询、删除操作。测试表明,相较传统列表,检索速度提升80%以上,存储减少15%,具备高实时性与可扩展性,适用于大规模屏幕监控系统。
119 5
|
2月前
|
数据采集 Web App开发 数据安全/隐私保护
实战:Python爬虫如何模拟登录与维持会话状态
实战:Python爬虫如何模拟登录与维持会话状态
|
2月前
|
Java 调度 数据库
Python threading模块:多线程编程的实战指南
本文深入讲解Python多线程编程,涵盖threading模块的核心用法:线程创建、生命周期、同步机制(锁、信号量、条件变量)、线程通信(队列)、守护线程与线程池应用。结合实战案例,如多线程下载器,帮助开发者提升程序并发性能,适用于I/O密集型任务处理。
256 0
|
2月前
|
机器学习/深度学习 监控 数据挖掘
Python 高效清理 Excel 空白行列:从原理到实战
本文介绍如何使用Python的openpyxl库自动清理Excel中的空白行列。通过代码实现高效识别并删除无数据的行与列,解决文件臃肿、读取错误等问题,提升数据处理效率与准确性,适用于各类批量Excel清理任务。
356 0
|
3月前
|
数据采集 机器学习/深度学习 人工智能
Python:现代编程的首选语言
Python:现代编程的首选语言
286 102
|
3月前
|
数据采集 机器学习/深度学习 算法框架/工具
Python:现代编程的瑞士军刀
Python:现代编程的瑞士军刀
311 104
|
3月前
|
人工智能 自然语言处理 算法框架/工具
Python:现代编程的首选语言
Python:现代编程的首选语言
257 103
|
3月前
|
机器学习/深度学习 人工智能 数据挖掘
Python:现代编程的首选语言
Python:现代编程的首选语言
193 82

推荐镜像

更多