【Flink on Yarn的三种部署方式详细介绍,及应用场景】

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink on Yarn的三种部署方式,Session模式,Per-Job模式,application模式,他们为何会诞生,我们要用哪种模式来部署

1. Session模式

这种模式会预先在yarn启动一个flink集群,然后将任务提交到这个集群上,这种模式,集群中的任务使用相同的资源,如果某一个任务出现了问题导致整个集群挂掉,那就得重启集群中的所有任务,这样就会给集群造成很大的负面影响。
在这里插入图片描述
在这里插入图片描述

特点:需要事先申请资源,使用Flink中的yarn-session(yarn客户端),启动JobManager和TaskManger

  • 优点:不需要每次递交作业申请资源,而是使用已经申请好的资源,从而提高执行效率
  • 缺点:作业执行完成以后,资源不会被释放,因此一直会占用系统资源

应用场景

==适合作业递交比较频繁的场景,小作业比较多的场景==

2. Per-Job模式

考虑到集群的资源隔离情况,一般生产上的任务都会选择per job模式,也就是每个任务启动一个flink集群,各个集群之间独立运行,互不影响,且每个集群可以设置独立的配置。
在这里插入图片描述
在这里插入图片描述

特点:每次递交作业都需要申请一次资源

  • 优点:作业运行完成,资源会立刻被释放,不会一直占用系统资源
  • 缺点:每次递交作业都需要申请资源,会影响执行效率,因为申请资源需要消耗时间

应用场景

==适合作业比较少的场景、大作业的场景==

3. application模式

3.1. 背景

flink-1.11 引入了一种新的部署模式,即 Application 模式。目前,flink-1.11 已经可以支持基于 Yarn 和 Kubernetes 的 Application 模式。

Session模式:所有作业共享集群资源,隔离性差,JM 负载瓶颈,main 方法在客户端执行。
Per-Job模式:每个作业单独启动集群,隔离性好,JM 负载均衡,main 方法在客户端执行。

在这里插入图片描述
注意 : 三角形 正方形 它们的位置,现在在==Deployer==

通过以上两种模式的特点描述,可以看出,main方法都是在客户端执行,社区考虑到在客户端执行 main() 方法来获取 flink 运行时所需的依赖项,并生成 JobGraph,提交到集群的操作都会在实时平台所在的机器上执行,那么将会给服务器造成很大的压力。尤其在大量用户共享客户端时,问题更加突出。
此外这种模式提交任务的时候会把本地flink的所有jar包先上传到hdfs上相应的临时目录,这个也会带来大量的网络的开销,所以如果任务特别多的情况下,平台的吞吐量将会直线下降。
因此,社区提出新的部署方式 ==Application 模式解决该问题。==

3.2. 原理

在这里插入图片描述
注意 : 三角形 正方形 它们的位置,现在在==JM==

Application 模式下,用户程序的 main 方法将在集群中而不是客户端运行,用户将程序逻辑和依赖打包进一个可执行的 jar 包里,集群的入口程序 (ApplicationClusterEntryPoint) 负责调用其中的 main 方法来生成 JobGraph。Application 模式为每个提交的应用程序创建一个集群,该集群可以看作是在特定应用程序的作业之间共享的会话集群,并在应用程序完成时终止。在这种体系结构中,Application 模式在不同应用之间提供了资源隔离和负载平衡保证。在特定一个应用程序上,JobManager 执行 main() 可以节省所需的 CPU 周期,还可以节省本地下载依赖项所需的带宽。
相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
目录
相关文章
|
11天前
|
消息中间件 资源调度 关系型数据库
如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理
本文介绍了如何在Flink on YARN环境中配置Debezium CDC 3.0,以实现实时捕获数据库变更事件并将其传输到Flink进行处理。主要内容包括安装Debezium、配置Kafka Connect、创建Flink任务以及启动任务的具体步骤,为构建实时数据管道提供了详细指导。
33 9
|
23天前
|
消息中间件 监控 数据可视化
实时计算Flink场景实践和核心功能体验
本文详细评测了阿里云实时计算Flink版,从产品引导、文档帮助、功能满足度等方面进行了全面分析。产品界面设计友好,文档丰富实用,数据开发和运维体验优秀,具备出色的实时性和动态扩展性。同时,提出了针对业务场景的改进建议,包括功能定制化增强、高级分析功能拓展及可视化功能提升。文章还探讨了产品与阿里云内部产品及第三方工具的联动潜力,展示了其在多云架构和跨平台应用中的广阔前景。
54 9
|
24天前
|
运维 监控 安全
实时计算Flink场景实践和核心功能体验
实时计算Flink场景实践和核心功能体验
|
25天前
|
运维 数据可视化 数据处理
实时计算Flink场景实践和核心功能体验 评测
实时计算Flink场景实践和核心功能体验 评测
52 4
|
14天前
|
数据采集 运维 搜索推荐
实时计算Flink场景实践
在数字化时代,实时数据处理愈发重要。本文分享了作者使用阿里云实时计算Flink版和流式数据湖仓Paimon的体验,展示了其在电商场景中的应用,包括数据抽取、清洗、关联和聚合,突出了系统的高效、稳定和低延迟特点。
43 0
|
1月前
|
资源调度 分布式计算 大数据
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
大数据-111 Flink 安装部署 YARN部署模式 FlinkYARN模式申请资源、提交任务
90 0
|
1月前
|
Kubernetes Cloud Native 流计算
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
Flink-12 Flink Java 3分钟上手 Kubernetes云原生下的Flink集群 Rancher Stateful Set yaml详细 扩容缩容部署 Docker容器编排
73 0
|
2月前
|
分布式计算 资源调度 Hadoop
在YARN集群上运行部署MapReduce分布式计算框架
主要介绍了如何在YARN集群上配置和运行MapReduce分布式计算框架,包括准备数据、运行MapReduce任务、查看任务日志,并启动HistoryServer服务以便于日志查看。
63 0
|
3月前
|
机器学习/深度学习 人工智能 运维
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
美团 Flink 大作业部署问题之Flink在生态技术演进上有什么主要方向
|
3月前
|
监控 Serverless Apache
美团 Flink 大作业部署问题之如何体现Flink在业界的影响力
美团 Flink 大作业部署问题之如何体现Flink在业界的影响力