MySQL:通过增加索引进行SQL查询优化

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
云数据库 RDS PostgreSQL,高可用系列 2核4GB
简介: 【实验】 一次非常有意思的SQL优化经历:从30248.271s到0.001s

【实验】

一次非常有意思的SQL优化经历:从30248.271s到0.001s

数据准备

1、新建3张数据表

-- 课程表 数据 100条
drop table course;
create table course(
id int primary key auto_increment,
name varchar(10)
);

-- 学生表 数据 7w条
create table student(
id int primary key auto_increment,
name varchar(10)
);

-- 学生成绩表 数据 700w条
create table student_score(
id int primary key auto_increment,
course_id int,
student_id int,
score int
);

2、使用脚本生成数据

# -- coding: utf-8 --
"""
安装依赖包
pip install requests chinesename pythink pymysql

Windows 登陆mysql: winpty mysql -uroot -p
"""
import random

from chinesename import ChineseName
from pythink import ThinkDatabase

db_url = "mysql://root:123456@localhost:3306/demo?charset=utf8"
think_db = ThinkDatabase(db_url)

course_table = think_db.table("course")
student_table = think_db.table("student")
student_score_table = think_db.table("student_score")

# 准备课程数据
course_list = [{"name": "课程{}".format(i)} for i in range(100)]
ret = course_table.insert(course_list).execute()
print(ret)

# 准备学生数据
cn = ChineseName()
student_list = [{"name": name} for name in cn.getNameGenerator(70000)]
ret = student_table.insert(student_list).execute()
print(ret)

# 准备学生成绩
score_list = []
for i in range(1, 101):
for j in range(1, 70001):
item = {
"course_id": i,
"student_id": j,
"score": random.randint(0, 100)
}

score_list.append(item)

ret = student_score_table.insert(score_list, truncate=20000).execute()
print(ret)

think_db.close()

3、检查数据情况

mysql> select * from  course limit 10;
+----+-------+
| id | name |
+----+-------+
| 1 | 课程0 |
| 2 | 课程1 |
| 3 | 课程2 |
| 4 | 课程3 |
| 5 | 课程4 |
| 6 | 课程5 |
| 7 | 课程6 |
| 8 | 课程7 |
| 9 | 课程8 |
| 10 | 课程9 |
+----+-------+
10 rows in set (0.07 sec)

mysql> select * from student limit 10;
+----+--------+
| id | name |
+----+--------+
| 1 | 司徒筑 |
| 2 | 窦侗 |
| 3 | 毕珊 |
| 4 | 余怠 |
| 5 | 喻献 |
| 6 | 庾莫 |
| 7 | 蒙煮 |
| 8 | 芮佰 |
| 9 | 鄢虹 |
| 10 | 毕纣 |
+----+--------+
10 rows in set (0.05 sec)

mysql> select * from student_score order by id desc limit 10;
+---------+-----------+------------+-------+
| id | course_id | student_id | score |
+---------+-----------+------------+-------+
| 7000000 | 100 | 70000 | 24 |
| 6999999 | 100 | 69999 | 71 |
| 6999998 | 100 | 69998 | 33 |
| 6999997 | 100 | 69997 | 14 |
| 6999996 | 100 | 69996 | 97 |
| 6999995 | 100 | 69995 | 63 |
| 6999994 | 100 | 69994 | 35 |
| 6999993 | 100 | 69993 | 66 |
| 6999992 | 100 | 69992 | 58 |
| 6999991 | 100 | 69991 | 99 |
+---------+-----------+------------+-------+
10 rows in set (0.06 sec)

4、检查数据数量

mysql> select count(*) from student;
+----------+
| count(*) |
+----------+
| 70000 |
+----------+
1 row in set (0.02 sec)

mysql> select count(*) from course;
+----------+
| count(*) |
+----------+
| 100 |
+----------+
1 row in set (0.00 sec)

mysql> select count(*) from student_score;
+----------+
| count(*) |
+----------+
| 7000000 |
+----------+
1 row in set (4.08 sec)

优化测试

1、直接查询



select * from student 
where id in (
select student_id from student_score where
course_id=1 and score=100
);

不知道为什么 2.7s 就执行完了… 原文中说 执行时间:30248.271s


马上看了下版本号,难道是版本的问题:

我的 : Server version: 5.7.21
原文:mysql 5.6


用 explain 看执行计划 type=all

explain extended
select * from student
where id in (
select student_id from student_score where
course_id=1 and score=100
);


# 执行完上一句之后紧接着执行
mysql> show warnings;

SELECT
`demo`.`student`.`id` AS `id`,
`demo`.`student`.`name` AS `name`
FROM
`demo`.`student` semi
JOIN ( `demo`.`student_score` )
WHERE
(
( `<subquery2>`.`student_id` = `demo`.`student`.`id` )
AND ( `demo`.`student_score`.`score` = 100 )
AND ( `demo`.`student_score`.`course_id` = 1 )
)

2、增加索引

单条大概执行15s

alter table student_score add index INDEX_COURSE_ID(course_id);
alter table student_score add index INDEX_SCORE(score);

加完索引之后执行 0.027s ,速度快了 100倍(2.7 / 0.027)


3、使用 inner join

用了 0.26

select s.id, s.name from student as s inner JOIN student_score as ss 
on s.id=ss.student_id
where ss.course_id=1 and ss.score=100

4、再次优化

执行也是 0.26, 并没有像原文所说的那样 0.001s…难道他的机器比我好?

select s.id, s.name from 
(select * from student_score where course_id=1 and score=100 ) as t
inner join student as s
on s.id=t.student_id

虽然和原文很多不一致的地方,不过也算是一次加索引优化数据库查询的实际操作了


参考文章

一次非常有意思的SQL优化经历:从30248.271s到0.001s

            </div>
相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
目录
相关文章
|
2天前
|
搜索推荐 编译器 Linux
一个可用于企业开发及通用跨平台的Makefile文件
一款适用于企业级开发的通用跨平台Makefile,支持C/C++混合编译、多目标输出(可执行文件、静态/动态库)、Release/Debug版本管理。配置简洁,仅需修改带`MF_CONFIGURE_`前缀的变量,支持脚本化配置与子Makefile管理,具备完善日志、错误提示和跨平台兼容性,附详细文档与示例,便于学习与集成。
266 116
|
17天前
|
域名解析 人工智能
【实操攻略】手把手教学,免费领取.CN域名
即日起至2025年12月31日,购买万小智AI建站或云·企业官网,每单可免费领1个.CN域名首年!跟我了解领取攻略吧~
|
12天前
|
安全 Java Android开发
深度解析 Android 崩溃捕获原理及从崩溃到归因的闭环实践
崩溃堆栈全是 a.b.c?Native 错误查不到行号?本文详解 Android 崩溃采集全链路原理,教你如何把“天书”变“说明书”。RUM SDK 已支持一键接入。
658 220
|
5天前
|
数据采集 人工智能 自然语言处理
Meta SAM3开源:让图像分割,听懂你的话
Meta发布并开源SAM 3,首个支持文本或视觉提示的统一图像视频分割模型,可精准分割“红色条纹伞”等开放词汇概念,覆盖400万独特概念,性能达人类水平75%–80%,推动视觉分割新突破。
333 34
Meta SAM3开源:让图像分割,听懂你的话
|
10天前
|
人工智能 移动开发 自然语言处理
2025最新HTML静态网页制作工具推荐:10款免费在线生成器小白也能5分钟上手
晓猛团队精选2025年10款真正免费、无需编程的在线HTML建站工具,涵盖AI生成、拖拽编辑、设计稿转代码等多种类型,均支持浏览器直接使用、快速出图与文件导出,特别适合零基础用户快速搭建个人网站、落地页或企业官网。
1528 157
|
存储 人工智能 监控
从代码生成到自主决策:打造一个Coding驱动的“自我编程”Agent
本文介绍了一种基于LLM的“自我编程”Agent系统,通过代码驱动实现复杂逻辑。该Agent以Python为执行引擎,结合Py4j实现Java与Python交互,支持多工具调用、记忆分层与上下文工程,具备感知、认知、表达、自我评估等能力模块,目标是打造可进化的“1.5线”智能助手。
897 61
|
7天前
|
编解码 Linux 数据安全/隐私保护
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
教程分享免费视频压缩软件,免费视频压缩,视频压缩免费,附压缩方法及学习教程
291 140