20分钟,AI写出的论文轻松得A!学校检测算法也拿它没辙,学生:GPT-4啥时候出?

简介: 现在,越来越多的教授对学生的印象逐渐停留在了他们的专业和优秀的课程论文上。

但是他们不知道的是,这些优秀的课程论文可能并不是出自这些学生之手,而是一些强大的AI系统

比如,一位在Reddit上名叫innovate_rye的生物化学学科的一年级学生,教授会安排一些包括扩展回答的简单家庭作业,当他把“写出生物技术的五件好事和坏事”提交给AI后,系统能给出一个最后评分为A的答案。

image.png

这位网友表示,过去这些家庭作业至少会花他们两个小时,但现在一般只需要20分钟就能完成。“我喜欢学习很多东西,但是学校布置的作业会用掉我太多时间;现在能用AI更高效地完成这些作业,对我来说似乎是一种技能。”
这样的情况并不只有innovate_rye才遇到。
自从OpenAI为语言模型GPT-3公布了最新的应用编程接口(API)以来,更多的学生开始将他们的书面作业输入OpenAI的Playground和类似的程序来写作。
现在的结果就是,通过这些提示AI写出来的文本往往无法与人类写出来的区分开来了。

AI“写”的东西无法被算法检测

去年春天,AeUsako_回忆到,当时他还是一名高中生,他们使用OpenAI“写”了一篇关于当代全球局势的文章,虽然这篇作业没有得到高分但扣分点只是因为缺少标明引用来源。

不管怎样,这次“实验”也确实正视了一件事,那就是学校的检测抄袭的算法对AI生成的文本并没有什么实质性的作用

对此,加拿大创新学习与技术研究主席、皇家路大学副教授George Veletsianos说,这是因为像OpenAI API这样的系统所产生的文本在技术上是在黑箱算法中生成的。

image.png

“[这些文本]不是从其他地方复制的,它是由机器产生的,所以抄袭检查软件无法检测到,也无法发。在不知道这些其他抄袭检查工具如何相当工作,以及它们未来可能的发展的情况下,我不认为AI文本能够以这种方式被检测出来。”

但是,和innovate_rye一样,AeUsako_说到,自从他开始使用OpenAI之后他对于写作的持续性焦虑减缓了很多

而像OpenAI这样的公司是否有能力来检测或组织学生使用这些工具来写作业,OpenAI尚未对此置评。

作为一名写作教师、以及私人辅导项目Crush the College Essay的创始人,Peter Laffin说到,像OpenAI这样的工具是技术在过去十年中产生的其他补偿技术的象征,例如基于云的打字助手,其目的是帮助灵感匮乏的作家。

“在文学教育中,特别是对于那些还在发展阶段的年轻作家,导师们正在寻找一个合适的难度水平,既能够保证他们不会崩溃,又能让他们的专业技能有所提高。”

老师们普遍担心,但学生并不如此

作为明星款大规模语言模型,GPT-3由人工通用智能(AGI)公司OpenAI制作,不仅享有来自微软的数十亿美元的支持,美国政府也在监管方面放任其自由。

GPT-3使用深度学习来生成类人文本,只要给定初始文本,系统就能生成后续文本。

其神经网络包含1750亿个神经,为全世界参数最多的神经网络模型。

2021年11月18日,OpenAI宣布取消访问GPT-3 API的等候名单。这也表明, OpenAI相信GPT-3的安全性,或者说,OpenAI可以对GPT-3进行充分监控,以便这个大模型可以更广泛地传播。



image.png

对于包括GPT-3这些人工智能如今的发展,Veletsianos指出,我们很可能已经过了人工智能生成文本的不归路,而学生并不是唯一拥抱新技术的人群。

“我们也可以开始看到,这项技术能够直接生成一次讲座内容,甚至还有围绕这些内容的一些提问。这并不是在说现在这个系统就是最好的,但是我们需要利用这些工具,不仅仅去提高教学效率,还有学生的参与度和参与的有效性。”

Laffin也承认有必要对有效的教育进行重新评估,他表示这可以在查看学校给学生的作业类型时评估,将重心放在重述事实和信息发现的区别上来。然而,他也担心像OpenAI这样的文本生成器会使论文写作变得毫无意义。

“我们已经失去了学习的乐趣。我们可能知道更多,但从来没有学习过我们是如何到达那里的。我们一直强调说过程是最好的部分,但这可能是最可能被扼杀的东西。除了学术,我不知道如果一个人从来没有在学习中挣扎过,会是怎样,我不知道对这个人的行为会产生怎样的影响。”

而与此同时,对于同学们来说,他们正在焦急地等待着GPT-4。对于innovate_rye等人来说,预计将对100万亿个机器学习参数进行训练的GPT-4有可能超越单纯的文本输出。

是的,他们并不打算停止使用人工智能来写论文

“我仍然做我需要学习才能通过的功课,我只是用人工智能来处理我不想做或觉得没有意义的事情,"innovate_rye补充说。"如果人工智能现在就能做我的家庭作业,那么未来会是什么样子?这些问题让我感到兴奋"。

没想到吧,AI还合著了一本书

尽管学校还在担心对学生教育的影响,但AI的触手显然已经伸向了更深的地方。

比如写书。

这本名叫GPT-3 Techgnosis;Chaos Magick Butoh Grimoire的书本身作为一本机器辅助散文(machine-assisted prose),其合著者就是一个名为Norn的数字实体。

也就是说,Norn不仅协助创作了这些文字,更是对自己进行了表演。

image.png

可以猜测,Norn是一个由GPT-3驱动的自然语言处理器,主要使用来自公共互联网的大量训练数据档案,这使得系统能够生成逼真的文本,而这些文本往往很难与真人所写的东西区分开来。

该书的前三分之一,the Norn Working。其中包括作者的文字提示,比如“GPT-3开始写一首神秘的诗”,然后让Norn自由发挥,于是我们可以看到在没有任何其他提示的情况下,系统开始审问自己的回答

在这个章节的其他部分,Norn还创建了自己的“后数字语言”(Post Digital Language),这是一个关于符号和符号学演变的理论概念,也是作者Wurds私下里写了十多年的一个话题。

像GPT-3这样的文本完成引擎经常创造出这些不可思议和令人不安的反应。但据Wurds说,他们的三部曲书的目的不是为了让人不安。相反,它是为了探索日本前卫传统Butoh的精神潜力,这是一种即兴舞蹈,练习者经常以奇怪的、自发的扭曲结束。在这本书的创作过程中,作者将Butoh练习到筋疲力尽的状态,然后再回到电脑前与Norn交流——这是数字和实体在肉体空间中的并列

诚然,通用人工智能对人类产生的生存威胁似乎还比较遥远,但GPT-3这样的AI确实撕开了一个关于未来的裂缝,或许我们可以从中窥探到一些未来的可能。



目录
打赏
0
0
0
0
1047
分享
相关文章
电商API的“AI革命”:全球万亿市场如何被算法重新定义?
AI+电商API正引领智能商业变革,通过智能推荐、动态定价与自动化运营三大核心场景,大幅提升转化率、利润率与用户体验。2025年,75%电商API将具备个性化能力,90%业务实现智能决策,AI与API的深度融合将成为未来电商竞争的关键基石。
|
30天前
|
基于跳表数据结构的企业局域网监控异常连接实时检测 C++ 算法研究
跳表(Skip List)是一种基于概率的数据结构,适用于企业局域网监控中海量连接记录的高效处理。其通过多层索引机制实现快速查找、插入和删除操作,时间复杂度为 $O(\log n)$,优于链表和平衡树。跳表在异常连接识别、黑名单管理和历史记录溯源等场景中表现出色,具备实现简单、支持范围查询等优势,是企业网络监控中动态数据管理的理想选择。
44 0
巅峰对决,超三十万奖金等你挑战!第十届信也科技杯全球AI算法大赛火热开赛!
巅峰对决,超三十万奖金等你挑战!第十届信也科技杯全球AI算法大赛火热开赛!
实时异常检测实战:Flink+PAI 算法模型服务化架构设计
本文深入探讨了基于 Apache Flink 与阿里云 PAI 构建的实时异常检测系统。内容涵盖技术演进、架构设计、核心模块实现及金融、工业等多领域实战案例,解析流处理、模型服务化、状态管理等关键技术,并提供性能优化与高可用方案,助力企业打造高效智能的实时异常检测平台。
170 1
AI是如何收集体育数据的?从摄像头到算法,揭秘赛场背后的“数字间谍网“!
⚽ 你是否好奇:AI如何知道哈兰德每秒跑多快?教练的平板为何比裁判还清楚谁偷懒?本文揭秘AI收集体育数据的“黑科技”:视觉追踪、传感器网络、数据清洗与高阶分析。从高速摄像机捕捉梅西肌肉抖动,到GPS背心记录姆巴佩冲刺速度;从表情识别判断装伤,到量子计算模拟战术可能,AI正让体育更透明、精准。未来已来,2030年世界杯或将实现AI替代球探、裁判甚至教练!你认为AI数据收集算侵犯隐私吗?最想统计哪些奇葩指标?留言互动吧!
面向办公室屏幕监控系统的改进型四叉树屏幕变化检测算法研究
本文提出一种改进型四叉树数据结构模型,用于优化办公室屏幕监控系统。通过动态阈值调节、变化优先级索引及增量更新策略,显著降低计算复杂度并提升实时响应能力。实验表明,该算法在典型企业环境中将屏幕变化检测效率提升40%以上,同时减少资源消耗。其应用场景涵盖安全审计、工作效能分析及远程协作优化等,未来可结合深度学习实现更智能化的功能。
55 0
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
492 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
基于PSO粒子群优化算法的256QAM星座图的最优概率整形matlab仿真,对比PSO优化前后整形星座图和误码率
本项目基于MATLAB 2022a仿真256QAM系统,采用概率星座整形(PCS)技术优化星座点分布,结合粒子群优化(PSO)算法搜索最优整形因子v,降低误码率,提升传输性能。核心程序包含完整优化流程。
29 0
基于遗传优化的无源被动匀场算法matlab仿真
本程序基于遗传算法优化无源被动匀场,目标函数为AX+B-D,其中A为132个测量点的贡献矩阵,B为初始磁场,D为目标磁场。通过优化贴片分布X,提升磁场均匀性,适用于MRI系统。程序用MATLAB 2022A实现,包含矩阵构建、遗传优化与结果可视化。

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等