基于clickhouse做用户画像,标签圈选

简介: 基于clickhouse做用户画像,标签圈选

clickhouse在做用户画像标签时,怎么去做圈选,表结构应该是怎么样的,我们应该怎么去处理,能够使其高性能的圈选,尽可能缩小其占用的存储空间?

这个问题,我通过代码给大家做下的演示

先在hive中对数据预处理

--最初表结构

create table f_tag_table(
    tag Int,
    tag_name String,
    cust_num String
);

image.gif

--插入数据

INSERT INTO f_tag_table values
                             (1001, '存款客户', '1,2,3'),
                             (2001,'国债客户', '2,3,4'),
                             (3001,'卡黑名单客户', '2,4'),
                             (4001,'短信黑名单', '3,4');

image.gif

现在的表是这样的:

tag tag_name cust_num
1001 存款客户 1,2,3
2001 国债客户 2,3,4
3001 卡黑名单客户 2,4
4001 短信黑名单 3,4

重新建一张表

create table usr_table(
  id int,
  tag_name varchar(30),
  tag int
);

image.gif

把表f_tag_table的数据插入进去

insert into usr_table
select usr, tag_name, tag from f_tag_table 
lateral view explode(split(cust_num, ',')) tmp as usr;

image.gif

现在的表结构如下

usr tag_name tag
1 存款客户 1001
2 存款客户 1001
3 存款客户 1001
2 国债客户 2001
3 国债客户 2001
4 国债客户 2001
2 卡黑名单客户 3001
4 卡黑名单客户 3001
3 短信黑名单 4001
4 短信黑名单 4001

--写入到文件中

./hive -e "
select
*
from ck.usr_table
" | tr "\t" "," > /fileName.csv

image.gif

--在clickhouse中建库建表

create database ck;
use ck;
create table usr_table(
  id UInt32,
  tag_name String,
  tag UInt32
)ENGINE = MergeTree()
ORDER BY id;

image.gif

--写入到CK中

clickhouse-client -m -u default -h 192.168.88.161 
--query 'INSERT INTO ck.usr_table FORMAT CSV' < /fileName.csv

image.gif

-- 存储表结构

create table tag_table(
  tag UInt32,
  tag_name String,
  cust_num AggregateFunction(groupBitmap, UInt64 )
)ENGINE = AggregatingMergeTree()
ORDER BY (tag, tag_name)
SETTINGS index_granularity = 128;
insert into tag_table
select
        tag,
       tag_name,
       groupBitmapState(toUInt64(id)) as cust_num
from usr_table group by tag,tag_name;

image.gif

--查询表

select tag, tag_name, bitmapToArray(cust_num) from tag_table;

image.gif

现在表是这样的:

tag tag_name cust_num
1001 存款客户 [1,2,3]
2001 国债客户 [2,3,4]
3001 卡黑名单客户 [2,4]
4001 短信黑名单 [3,4]

用bitmap进行圈选

WITH
  (
  SELECT cust_num from tag_table where tag ='1001'
  ) AS tag1,
  (
  SELECT cust_num from tag_table where tag ='2001'
  ) AS tag2,
  (
  SELECT cust_num from tag_table where tag ='3001'
  ) AS tag3,
  (
  SELECT cust_num from tag_table where tag ='4001'
  ) AS tag4
select bitmapToArray(bitmapAndnot(bitmapOr(tag1, tag2),bitmapOr(tag3, tag4))) 
as customer;

image.gif

至此你已经完成了对用户标签的圈选

目录
相关文章
|
8月前
|
存储 搜索推荐 关系型数据库
用户画像系列——HBase 在画像标签过期策略中的应用
用户画像系列——HBase 在画像标签过期策略中的应用
149 0
|
存储 SQL 机器学习/深度学习
用户画像标签体系——从零开始搭建实时用户画像(三)
用户画像标签体系——从零开始搭建实时用户画像(三)
2818 0
用户画像标签体系——从零开始搭建实时用户画像(三)
|
关系型数据库 分布式数据库 PolarDB
沉浸式学习PostgreSQL|PolarDB 15: 企业ERP软件、网站、分析型业务场景、营销场景人群圈选, 任意字段组合条件数据筛选
本篇文章目标学习如何快速在任意字段组合条件输入搜索到满足条件的数据.
650 0
|
搜索推荐 关系型数据库 数据库
沉浸式学习PostgreSQL|PolarDB 3: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销
业务场景1 介绍: 营销场景, 根据用户画像的相似度进行目标人群圈选, 实现精准营销 在营销场景中, 通常会对用户的属性、行为等数据进行统计分析, 生成用户的标签, 也就是常说的用户画像. 标签举例: 男性、女性、年轻人、大学生、90后、司机、白领、健身达人、博士、技术达人、科技产品爱好者、2胎妈妈、老师、浙江省、15天内逛过手机电商店铺、... ... 有了用户画像, 在营销场景中一个重要的营销手段是根据条件选中目标人群, 进行精准营销. 例如圈选出包含这些标签的人群: 白领、科技产品爱好者、浙江省、技术达人、15天内逛过手机电商店铺 .
330 0
|
搜索推荐 BI OLAP
Clickhouse在画像场景如何快速计算人群的年龄分布
在画像场景场景中,对不同年龄段的人群进行计数是一个常见的操作,如何使用Clickhouse快速的计算出人群的年龄分布情况呢?
1639 1
Clickhouse在画像场景如何快速计算人群的年龄分布
|
分布式计算 数据可视化 搜索推荐
用户画像分析-21
用户画像分析-21
273 0
用户画像分析-21
|
SQL 分布式计算 搜索推荐
用户画像分析-14
用户画像分析-14
166 0
用户画像分析-14
|
运维 分布式计算 搜索推荐
用户画像分析-15
用户画像分析-15
191 0
用户画像分析-15
|
分布式计算 搜索推荐 Java
用户画像分析-10
用户画像分析-10
149 0
|
SQL 分布式计算 搜索推荐
用户画像分析-7
用户画像分析-7
129 0
用户画像分析-7