大数据热是华而不实吗?大数据和小数据有什么本质区别

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 大数据热是华而不实吗?大数据和小数据有什么本质区别

通过看到一种火热的技术现象,会产生对事物的一种浅层认知后,然后再深入理解去获得一个比较深刻的认识。


大数据具有社会化,技术性的重要特点。


从社会化看


先说这个“大”,也就是大数据最早的定义:速度、类型和容量,所谓的3V。实际上大数据的发展早已经突破了这个定义。数据体现的不是所谓的“大小”,而是规模。


每个人的手机,都是一部随时产生数据的设备,我们时刻发着消息,每次点击APP,都生产一条事件数据,无论这个操作单独看起来,有多么无价值,但它仍然会被云端记录,因为其只是大数据总体价值的一个原子单位;

工业上因为物联网技术的实施,加剧了大规模数据的汇聚,目前工业上谈数据汇聚,都是上千个采集点,每秒上百万的实时数据该怎么去处理;


人、车的移动与地标、建筑形成的坐标网,可以绘制城市的动态画像,而不是过去靠电话线、TV和人力上报统计来完成,这就是智慧城市的大数据鲜活力的表现。


我们再说数据的流动性,或者说数据的生命周期。数据在过去的流向基本都是数据坟墓,也就是有一个启动点,亦会有一个终点。


在大数据的时代,数据有时候可能会在流动的中途就消失了,但新形式的数据又会产生,也可能会在一个阶段后就不在被使用,其流动性越来越强,可是又提倡了和以前截然相反的存储方式:数据的原始形态越来越早的被存储,而不是经过ETL的加工形成固有设定的样子而沉寂下去。


因为越早的原始数据被存储,就能为数据在生命周期内的不同阶段提供给分析者更全面数据特征,利用价值关系提取,但终将会在生命周期结束时清理掉,无论是因为政策、技术存量还是设计思想。


社会化的另一个问题就是数据的多样性,城市视频采集,每天需要经历PT级别的多媒体数据需要进行清洗;


工业设备会以设备类型+时间戳+状态值的形式源源不断的传递来时间序列数据,需要存储、回放和监测;


社交网络吸引着大量的用户流量,流量的关键媒体就是图、文、短视频;


搜索引擎爬虫每天要一遍接着一遍的对所有登记注册的网站重新抓取更新页面,计算页面在互联网上影响力,这一切都是过去在传统数据结构下,用结构化的设计思路难以想象的事情。


20210309173957101.jpg


最后再说说大数据的开放性,这就和“小数据”具有了非常明显的不同,大数据讲究开放,通过共享的平台实现数据的接入,也同样实现数据的对外连接。


事实上,大数据的发展步伐太快,隐私政策和信息法都被甩在了身后,所以才会出现大家所痛恨的不良商家对个人隐私的侵犯。当大数据的规模到了临界点的时候,尤其是电子商务平台和社交平台,那么这种脚步就会放缓,目前看隐私政策法规已经逐步清晰多了。


反观小数据,实际上就是一个社会化的一种长尾的表现,


20210309173957290.png


大数据集中在蓝色部分,被少量的大厂、政府机构、公共事业部门所拥有,那么这些数据无论面向社会的那个领域,都趋向于数据的统一结构化、标准化和共享性,不过社会大量的企业、软件服务商的信息库中都存有各式各样设计的数据表,就是黄色部分一样形成长长的尾巴。因此小数据是趋向于结构设计的多样性,而且因为不具备共享技术的投入和动力,大量的小数据大多数都是封闭的。


从技术看


谈完了大数据的社会化特点,我们再说说大数据的技术问题。大数据的规模化导致了原先传统技术的数据处理系统无法实现正常的操作了,甚至已经远远达不到向客户承诺的SLA(服务级别协议)——品质、水准、性能,才会有大数据技术的出现。


就追溯大数据技术的源头,谈谈Google,当年Google打遍天下无敌手的Page Rank算法,运行在传统的昂贵的商业单机数据库上,结果可想而知,存储规模远远超过单机所能承受的极限。Google遵循的是一种简单直接的设计风格,设计出了GFS分布式文件系统,更让人大跌眼镜的是,居然没有设计索引?


难道Google的设计师在设计索引的时候睡着了,醒来就忽略了吗?其实不然,这就是Google设计理念的关键,抓住问题的本质,目标是能在分布式的环境下更快、更多的存储原始数据,不去设计索引,就能大大减轻了数据存储的负担。Google的目标是对抓取的页面分析价值、影响,然后形成排名,再写入到页面查询索引的数据库。那么这个分析的过程,可以批量的、顺序的、大块的读取数据,然后并行任务的去提升效率分析处理。


GFS的设计方法很有效,简单直接,就像二战苏军的t43坦克一样,没有德军虎式精密,但是可以大量廉价的生产,发挥战争中的规模效应,互联网战场也一样,迅速的扩大占领区。


GFS的开源版,就是大名鼎鼎的Hadoop了,看着Hadoop,就跟看见他大哥GFS一个模子,HDFS可以说把大文件的高效、分块、顺序读写发挥到了极致。


当面对社会化大数据的快速发展,而设计出了的最简单、直接、高效的技术手段去解决之后,在做一些精细化的发展,例如:GFS之上就有了BigTable,开源的HDFS之上就是HBase,通过SSTable+LSM树的数据结构建立符合大数据写入和回放的索引机制,完全不同于传统的关系型数据库的B树索引了!这种索引机制也是NoSQL的基石。


20210309173957776.png


这张图就是大数据存储的谱系,可以看到顶端数据存储部分追溯到了Google的GFS。


Google这是引领了大数据时代的技术,让我们能更加从容的去应对大数据带来的数据系统冲击,关键还是我们实实在在的大数据需求,需要在这个庞大的技术生态中寻找到合适的组合方案,这才是大数据技术应用的关键。


所以曾经言必大数据的火热期早已经过去了,无论从客户方,还是技术方都在探寻什么才是真正的大数据,但至少知道挂一个大屏,展示几个统计图的那个所谓的“大数据”形式,早已成为过去的笑谈。


真正的大数据时代已经来临,而且懂得如何利用技术去解决大数据问题,产生出以前不敢想的数据价值,或者以前难以轻松做到的事情,现在很多都将变为可能。


无论是使用批量技术用Spark将数据集和机器学习算法进行连接也好,还是用Kafka实现每天百亿数据的汇聚分发也罢,都是为了使得让更大量的数据形成流动的价值,为不同类型的用户提供独具特色的数据服务。


这时候数据的产出过程更像流动的血液,社会的血液,让我们的生活表现得更生动、活跃。


我们是“读字节”技术团队,大数据、分布式软件架构的深度、专业解读。


相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
存储 分布式计算 数据挖掘
数据架构 ODPS 是什么?
数据架构 ODPS 是什么?
361 7
|
1月前
|
存储 分布式计算 大数据
大数据 优化数据读取
【11月更文挑战第4天】
53 2
|
1月前
|
数据采集 监控 数据管理
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第26天】随着信息技术的发展,数据成为企业核心资源。本文探讨大数据平台的搭建与数据质量管理,包括选择合适架构、数据处理与分析能力、数据质量标准与监控机制、数据清洗与校验及元数据管理,为企业数据治理提供参考。
90 1
|
1月前
|
机器学习/深度学习 存储 大数据
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系
在大数据时代,高维数据处理成为难题,主成分分析(PCA)作为一种有效的数据降维技术,通过线性变换将数据投影到新的坐标系,保留最大方差信息,实现数据压缩、去噪及可视化。本文详解PCA原理、步骤及其Python实现,探讨其在图像压缩、特征提取等领域的应用,并指出使用时的注意事项,旨在帮助读者掌握这一强大工具。
72 4
|
1月前
|
存储 大数据 数据管理
大数据分区简化数据维护
大数据分区简化数据维护
25 4
|
1月前
|
存储 大数据 定位技术
大数据 数据索引技术
【10月更文挑战第26天】
60 3
|
1月前
|
存储 大数据 OLAP
大数据数据分区技术
【10月更文挑战第26天】
71 2
|
1月前
|
消息中间件 分布式计算 大数据
数据为王:大数据处理与分析技术在企业决策中的力量
【10月更文挑战第29天】在信息爆炸的时代,大数据处理与分析技术为企业提供了前所未有的洞察力和决策支持。本文探讨了大数据技术在企业决策中的重要性和实际应用,包括数据的力量、实时分析、数据驱动的决策以及数据安全与隐私保护。通过这些技术,企业能够从海量数据中提取有价值的信息,预测市场趋势,优化业务流程,从而在竞争中占据优势。
118 2
|
1月前
|
数据采集 分布式计算 大数据
数据治理之道:大数据平台的搭建与数据质量管理
【10月更文挑战第27天】在数字化时代,数据治理对于确保数据资产的保值增值至关重要。本文探讨了大数据平台的搭建和数据质量管理的重要性及实践方法。大数据平台应包括数据存储、处理、分析和展示等功能,常用工具如Hadoop、Apache Spark和Flink。数据质量管理则涉及数据的准确性、一致性和完整性,通过建立数据质量评估和监控体系,确保数据分析结果的可靠性。企业应设立数据治理委员会,投资相关工具和技术,提升数据治理的效率和效果。
118 2
|
1月前
|
存储 安全 大数据
大数据隐私保护:用户数据的安全之道
【10月更文挑战第31天】在大数据时代,数据的价值日益凸显,但用户隐私保护问题也愈发严峻。本文探讨了大数据隐私保护的重要性、面临的挑战及有效解决方案,旨在为企业和社会提供用户数据安全的指导。通过加强透明度、采用加密技术、实施数据最小化原则、加强访问控制、采用隐私保护技术和提升用户意识,共同推动大数据隐私保护的发展。